Focusing of light beams by the phase apodization pupil
Reddy A.N.K., Martinez-Corral M., Khonina S.N., Karpeev S.V.

 

Samara National Research University, 443086, Russia, Samara, Moskovskoye Shosse 34,
 School of Engineering, Anurag Group of Institutions, Venkatapur, Ghatkesar, Medchal district, Hyderabad - 500008, Telangana, India,
 3D imaging and Display Laboratory, Department of Optics and Optometry, University of Valencia, E-46100 Burjassot, Spain,

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia

 PDF

Abstract:
We investigated reduction of the size of the illuminated beam in the focal region produced by the optical systems of NA = 0.99 has been. The intensity distributions of polarized light field in the focal volume for the phase apodization pupil have been discussed. The circular pupil in different phase apodization situations can be employed to control the field components in the resultant intensity distribution. We show that both axial and transverse resolution improvement in the focal distribution is possible by applying proper phase engineering in the annulus of the pupil function.

Keywords:
focal spot, phase apodization, linear polarization, resolution, high numerical aperture focusing system.

Citation:
Reddy ANK, Martinez-Corral M, Khonina SN, Karpeev SV. Focusing of light beams with the phase apodization of the optical system. Computer Optics 2018; 42(4): 620-626. DOI: 10.18287/2412-6179-2018-42-4-620-626.

References:

  1. Dorn R, Quabis S, Leuchs G. A sharper for radially polarized light beam. Phys Rev Lett 2003; 91: 233901. DOI: 10.1103/PhysRevLett.91.233901.
  2. Sheppard CJR, Choudhury A. Annular pupils, radial polarization, and superresolution. Appl Opt 2004; 43(22): 4322-4327. DOI: 10.1364/AO.43.004322.
  3. Wang H, Shi L, Lukyanchuk B, Sheppard C, Chong TC. Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat Photon 2008; 2: 501-505. DOI: 10.1038/nphoton.2008.127.
  4. Quabis S, Dorn R, Eberler M, Glöckl O, Leuchs G. Focusing light to tighter spot. Opt Comun 2000; 179(1-6): 1-7. DOI: 10.1016/S0030-4018(99)00729-4.
  5. Davidson N, Bokor N. High-numerical-aperture focusing of radially polarized doughnuts beams with a parabolic mirror and a flat diffractive lens. Opt Lett 2004; 29(12): 1318-1320. DOI: 10.1364/OL.29.001318.
  6. Khonina SN, Volotovsky SG. Controlling the contribution of the electric field components to the focus of a high numerical aperture lens using binary phase structures. J Opt Soc Am A 2010; 27(10): 2188-2197. DOI: 10.1364/JOSAA.27.002188.
  7. Sun CC, Liu CK. Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation. Opt Lett 2003; 28(2): 99-101. DOI: 10.1364/OL.28.000099.
  8. Huang K, Shi P, Kang X-L, Zhang X, Li Y-P. Design of DOE for generating a needle of a strong longitudinally polarized field. Opt Lett 2010; 35(7): 965-967. DOI: 10.1364/OL.35.000965.
  9. Zhou Z, Tan Q, Li Q, Jin G. Achromatic generation of radially polarized beams in visible range using segmented subwavelength metal wire gratings. Opt Lett 2009; 34(21): 3361-3363. DOI: 10.1364/OL.34.003361.
  10. Volpe G, Petrov D. Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beam. Opt Commun 2004; 237(1-3): 89-95. DOI: 10.1016/j.optcom.2004.03.080.
  11. Kozawa Y, Sato S. Generation of a radially polarized beam by use of a conical Brewster prism. Opt Lett 2005; 30(22): 3063-3065. DOI: 10.1364/OL.30.003063.
  12. Khonina SN. Simple phase optical elements for narrowing of a focal spot in high-numerical-aperture conditions. Opt Eng 2013; 52(9): 091711. DOI: 10.1117/1.OE.52.9.091711.
  13. Igelesias I, Vohnsen B. Polarization is structuring for focal volume shaping in high-resolution microscopy. Opt Commun 2007; 271(1): 40-47. DOI: 10.1016/j.optcom.2006.10.001.
  14. Khonina SN, Karpeev SV, Alferov SV. Polarization converter for higher-order laser beams using single binary diffractive optical element as beam splitter. Opt Lett 2012; 37(12): 2385-2387. DOI: 10.1364/OL.37.002385.
  15. Neil MAA, Massoumian F, Juškaitis R, Wilson T. Method for the generation of arbitrary complex vector wave fronts. Opt Lett 2002; 27(21): 1929-1931. DOI: 10.1364/OL.27.001929.
  16. Khonina SN, Karpeev SV. Grating-based optical scheme for the universal generation of inhomogeneously polarized beams. Appl Opt 2010; 49(10): 1734-1738. DOI: 10.1364/AO.49.001734.
  17. Davis JA, McNamara DE, Cottrell DM, Sonehara T. Two-dimensional polarization encoding with a phase only liquid-crystal spatial light modulator. Appl Opt 2000; 39(10): 1549-1554. DOI: 10.1364/AO.39.001549.
  18. Jacquinot P, Roizen-Dossier B. Apodization. Prog Opt 1964; 3: 29-32.
  19. Barakat R. Solution to the Lunenberg apodization problems. J Opt Soc Am 1962; 52: 264-272.
  20. Ratnam C, Lakshman Rao V, Goud SL. Comparison of PSF maxima and minima of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems. J Phys D: Appl Phys 2006; 39: 4148-4152. DOI: 10.1088/0022-3727/39/19/005.
  21. Sayanna R, Karuna Sagar D, Goud SL. Effects of defocusing on the sparrow limits for apodized optical systems. Opt Commun 2003; 217(1-6), 59-67. DOI: 10.1016/S0030-4018(02)02291-5.
  22. Karuna Sagar D, Bikshamaiah G, Goud MK, Goud SL. Defect of focus in two-line resolution with Hanning amplitude filters. J Mod Opt 2006; 53(14): 2011-2019. DOI: 10.1080/09500340600787507.
  23. Rao L, Pu J, Chen Z, Yei P. Focus shaping of cylindrically polarized vortex beams by a high numerical aperture lens. Opt Laser Technol 2009; 41(3): 241-246. DOI: 10.1016/j.optlastec.2008.06.012.
  24. Chen B, Pu J. Tight focusing of the elliptically polarized vortex beam. Appl Opt 2009; 48(7): 1288-1294. DOI: 10.1364/AO.48.001288.
  25. Khonina SN, Kazanskiy NL, Volotovsky SG. Vortex phase transmission function as a factor to reduce the focal spot of the high aperture system. J Mod Opt 2011; 58(9): 748-760. DOI: 10.1080/09500340.2011.568710.
  26. Cheng L, Siu GG. Asymmetric apodization. Meas Sci Technol 1991; 2: 198-202. DOI: 10.1088/0957-0233/2/3/002.
  27. Reddy ANK, Karuna Sagar D. Two-point resolution of asymmetrically apodized optical systems. Óptica Pura y Aplicada 2013; 46(3): 215-222. DOI: 10.7149/OPA.46.3.215.
  28. Reddy ANK, Verma P, Khonina SN, Hashemi M, Martinez-Corral M. Far-field light imaging in the presence of atmospheric turbulence with rotating anti-phase apertures: Theoretical investigation. 2017 IEEE International Conference on Industrial Technology (ICIT) 2017: 1008-1012. DOI: 10.1109/ICIT.2017.7915499.
  29. Richards B, Wolf E. Electromagnetic diffraction in optical systems, II. The structure of the image ?eld in an aplanatic system. Proc Royal Soc A 1959; 253: 358-379. DOI: 10.1098/rspa.1959.0200.
  30. Uryupina DS, Ivanov KA, Brantov AV, Savel'ev AB, By-chenkov VYu, Povarnitsyn ME, Volkov RV, Tikhonchuk VT. Femtosecond laser-plasma interaction with prepulse-generated liquid metal microjets. Physics of Plasmas 2012; 19(1): 013104. DOI: 10.1063/1.3675871.
  31. Khonina SN, Degtyarev SA, Porfirev AP, Moiseev OYu, Poletaev SD, Larkin AS, Savelyev-Trofimov AB. Study by focusing into closely spaced spots via illuminating a diffractive optical element by a short-pulse laser beam. Computer Optics 2015; 39(2): 187-196. DOI: 10.18287/0134-2452-2015-39-2-187-196.
  32. Reddy ANK, Karuna Sagar D, Khonina SN. Complex pupil mask for aberrated imaging of closely spaced objects. Optics and Spectroscopy 2017; 123(6): 940-949. DOI: 10.1134/S0030400X17120189.
  33. McKechnie TS. The effect of defocus on the resolution of two points. J Mod Opt 1973; 20(4): 253-262. DOI: 10.1080/713818765.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20