Ternary number systems in finite fields
Chernov V.M.

 

Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Samara, Russia,
IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia

 PDF

Abstract:
The work continues the author's previous study of positional number systems in finite fields. The paper considers ternary number systems and arithmetic operations algorithms for the representation of elements of finite fields in the so-called ternary reduced number systems, which are reductions of the canonical number systems when mapping the corresponding ring of integers of a quadratic field into some prime field. A classification of finite fields in which such number systems exist is given. It is proved that the reduced ternary number systems exist for most finite prime fields.

Keywords:
canonical and reduced number systems, finite fields, machine arithmetic.

Citation:
Chernov V.M. Ternary number systems in finite fields. Computer Optics 2018; 42(4): 704-711. DOI: 10.18287/2412-6179-2018-42-4-704-711.

References:

  1. Chernov VM. Calculation of Fourier–Galois transforms in reduced binary number systems [In Russian]. Computer Optics 2018; 42(3): 495-500. DOI: 10.18287/2412-6179-2018-42-3-495-500.
  2. Bogdanov PS, Chernov VM. Classification of binary quasi-canonical number systems in imaginary quadratic fields [In Russian]. Computer Optics 2013; 37(3): 391-400.
  3. Glusker M, Hogan DM, Vass P. The ternary calculating machine of Thomas Fowler. IEEE Ann Hist Comput 2005; 27(3): 4-22. DOI: 10.1109/MAHC.2005.49.
  4. Brousentov NP, Maslov SP, Alvarez JR, Zhogolev EA. Development of ternary computers at moscow state
    university. Source: áhttp://www.computer-museum.ru/english/setun.htmñ.
  5. Frieder G. Ternary computers; Part 1: Motivation for ternary computers. Proceedings of the 5th Annual Workshop on Microprogramming 1972: 83-86. DOI: 10.1145/776378.776392.
  6. Srivastava A, Venkatapathy K. Design and implementation of a low power ternary full adder. VLSI Design 1996; 4(1), 75-81. DOI: 10.1155/1996/94696.
  7. Gundersen H. Aspect of balanced ternary arithmetic implemented using CMOS recharged semi-floating
    gate device. Oslo: Oslo University; 2008.
  8. Adikar J, Dimitrov VS, Imbert L. Hybrid binary-ternary number system for elliptic curve crypto system. IEEE Transactions on Computers 2010; 60(2): 254-265. DOI: 10.1109/TC.2010.138.
  9. Porat D.I. Three valued digital systems. Proc IEE 1969; 116(6): 947-954. DOI: 10.1049/piee.1969.0177.
  10. Vasundara PKS, Gurumurthy KS. Multi-valued logic addition and multiplication in Galois fields. Proc. ACT' 09 2009. DOI: 10.1109/ACT.2009.190.
  11. Obiniyi AA, Absalom EE, Adako K. Arithmetic logic design with color coded ternary for ternary computing. Int J Comput Appl 2011; 26(11): 31-37. DOI: 10.5120/3162-2929.
  12. Lukasiewicz J. Aristotile's sillogistic from the standpoint of modern formal logic. Oxford: Clarendon Press; 1957.
  13. Profeanu I. A ternary arithmetic and logic. Proc WCE 2010; 1.
  14. Karpenko АS. Lukasiewicz’s logics and prime numbers [In Russian]. Мoscow: “Nauka” Publisher; 2000. ISBN: 5-02-013048-6.
  15. Ahmad S, Alam M. Balanced-ternary logic for improved and advanced computing. Int J Comput Sci Inf Technol 2014; 5(4): 5157-5160.
  16. Wu X.W. CMOS ternary logic circuits. IEE Proceedings G – Circuits, Devices and Systems 1990; 137(1): 21-27. DOI: 10.1049/ip-g-2.1990.0005.
  17. Nagaraju P, Vishnuvardhan N. Ternary logic gates and ternary SRAM cell implementation in VLSI. Int J Sci Res 2014; 3(11): 1920-1924.
  18. Lin S, Kim Y-B, Lombardi F. CNTFET-Based design of ternary logic gates and arithmetic circuits. IEEE Trans Nanotechnol 2011; 10(2): 217-225. DOI: 10.1109/TNANO.2009.2036845.
  19. Ireland K, Rosen M. A classical introduction to modern number theory. New York: Springer Verlag; 1982. ISBN: 978-0-387-97329-6.
  20. Borevich ZI, Shafarevich IR. Number theory. New York, London: Academic Press; 1966.
  21. Katai I, Kovacs B. Canonical number systems in imaginary quadratic fields. Acta Mathematica Academiae Scientarium Hungarica 1981; 37(1-3): 159-164.
  22. Thuswardner J. Elementary properties of canonical numder systems in quadratic fields. In book: Bergum GE, Philippou AN, Horadam AF, eds. Application of Fibonacci numbers. Dordrecht: Springer; 1998: 405-414. DOI: 10.1007/978-94-011-5020-0_45.
  23. The On-Line Encyclopedia of Integer Sequences® (OEIS®). Source: áhttps://oeis.orgñ.
  24. Varichenko LV, Labunetc VG, Rakov MA. Abstract algebraic systems and digital signal processing [In Russian]. Kiev, “Naukova dumka” Publisher; 1986.
  25. Gregory RT, Krishnamurty EV. Methods and applications of error-free computation. New York: Springer-Verlag; 1984. ISBN: 978-1-4612-9754-3.
  26. Davenport J, Siret Y, Tournier É. Calcul formel: systèmes et algorithmes de manipulations algébriques. Paris, New York: Masson; 1987. ISBN: 2-225-80990-9.
  27. Pawlak Z. An electronic digital computer based on the (–2) system. International Journal of Computer and Information Science 1959; 7, 713-721.
  28. Masáková Z, Pelantová E, Vávra T. Arithmetics in number systems with a negative base. Theoretical Computer Science 2011; 412(8-10): 835-845. DOI: 10.1016/j.tcs.2010.11.033.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20