A variety of Fourier-invariant Gaussian beams
Kotlyar V.V., Kovalev A.A., Porfirev A.P.

 

Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Samara, Russia,
IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia

 PDF

Abstract:
A two-parameter family of astigmatic elliptical Gaussian (AEG) optical vortices is found, which are free space modes up to scale and rotation. We calculate the total normalized orbital angular momentum of AEG vortices, which can be integer, fractional and zero, and which is equal to the algebraic sum of two terms corresponding to the contribution of the vortex and astigmatic components of the light field. In any transverse plane, such a beam has an isolated n-fold degenerate intensity null on the optical axis (an optical vortex) embedded into an elliptical Gaussian beam. In addition to the quadratic elliptical phase, the beam has a phase of a cylindrical lens rotated by an angle of 45 degrees relative to the principal axes of the Gaussian beam intensity ellipse.

Keywords:
elliptic Gaussian vortex, cylindrical lens, space mode, orbital angular momentum.

Citation:
Kotlyar VV, Kovalev AA, Porfirev AP. A variety of Fourier-invariant Gaussian beams. Computer Optics 2018; 42(5): 727-735. DOI: 10.18287/2412-6179-2018-42-5-727-735.

References:

  1. Kotlyar VV, Kovalev AA, Porfirev AP. Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl Opt 2017; 56(14): 4095-4110. DOI: 10.1364/AO.56.004095.
  2. Bekshaev AYa, Soskin MS, Vasnetsov MV. Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams. J Opt Soc Am A 2003; 20(8): 1635-1643. DOI: 10.1364/JOSAA.20.001635.
  3. Denisenko V, Shvedov V, Desyatnikov AS, Neshev DN, Krolikowski W, Volar A, Soskin M, Kivshar YS. Determination of topological charges of polychromatic optical vortices. Opt Express 2009; 17(26): 23374-23379. DOI: 10.1364/OE.17.023374.
  4. Alperin SN, Niederriter RD, Gopinath JT, Siemens ME. Quantitative measurement of the orbital angular momentum of light with a single, stationary lens. Opt Lett 2016; 41(21): 5019-5022. DOI: 10.1364/OL.41.005019.
  5. Alperin SN, Siemens ME. Angular momentum of topologically structured darkness. Phys Rev Lett 2017; 119: 203902. DOI: 10.1103/PhysRevLett.119.203902.
  6. Abramochkin EG, Volostnikov VG. Beam transformations and transformed beams. Opt Commun 1991; 83(1-2): 123-135. DOI: 10.1016/0030-4018(91)90534-K.
  7. Courtial J, Dholakia K, Allen L, Padgett MJ. Gaussian Beams with very high orbital angular momentum. Opt Commun 1997; 144(4-6): 210-213. DOI: 10.1016/S0030-4018(97)00376-3.
  8. Kotlyar VV, Kovalev AA, Porfirev AP. Astigmatic laser beams with a large orbital angular momentum. Opt Express 2018; 26(1): 141-156. DOI: 10.1364/OE.26.000141.
  9. Chávez-Cedra S, Gutiérrez-Vega JC, New GH. Elliptic vortices of electromagnetic wave fields. Opt Lett 2001; 26(22): 1803-1805. DOI: 10.1364/OL.26.001803.
  10. Bandres MA, Gutiérrez-Vega JC. Ince-Gaussian modes of the paraxial wave equation and stable resonators. J Opt Soc Am A 2004; 21(5): 873-880. DOI: 10.1364/JOSAA.21.000873.
  11. Kotlyar VV, Kovalev AA. Hermite-Gaussian modal laser beams with orbital angular momentum. J Opt Soc Am A 2014; 31(2): 274-282. DOI: 10.1364/JOSAA.31.000274.
  12. Kotlyar VV, Kovalev AA, Porfirev AP. Vortex Hermite-Gaussian laser beams. Opt Lett 2014; 40(5): 701-704. DOI: 10.1364/OL.40.000701.
  13. Bekshaev AYa, Soskin MS, Vasnetsov MV. Transformation of higher-order optical vortices upon focusing by an astigmatic lens. Opt Commun 2004; 241(4-6): 237-247. DOI: 10.1016/j.optcom.2004.07.023.
  14. Maji S, Brundavanam MM. Controlled noncannonical vortices from higher-order fractional screw dislocations. Opt Lett 2017; 42(12): 2322-2325. DOI: 10.1364/OL.42.002322.
  15. Volyar AV, Egorov YuA. Super pulses of orbital angular momentum in fractional-order spiroid vortex beams. Opt Lett 2018; 43(1): 74-77. DOI: 10.1364/OL.43.000074.
  16. Melo LA, Jesus-Silva AJ, Chavez-Cedra S, Ribeiro PHS, Soares WC. Direct measurement of the topoloigical charge in elliptical beams using diffraction by a triangular aperture. Sci Rep 2018; 8: 6370. DOI: 10.1038/s41598-018-24928-5.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20