Optical differentiation based on the Brewster effect
Nesterenko D.V., Kolesnikova M.D., Lyubarskaya A.V.

 

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia;
Samara National Research University, 34, Moskovskoye shosse, 443086, Samara, Russia

 PDF

Abstract:
In this work, technologies of analog optical computing for image edge detection using flat interfaces between dielectrics are studied both theoretically and experimentally. The feasibility of analog differentiation and edge detection by using the Brewster effect for polarized light sources is demonstrated. The efficiency of the analog image processing is investigated using a variety of amplitude and phase masks.

Keywords:
nanophotonics, optical analog computing, planar structures, waveguide mode, optical resonances, Brewster effect, image processing.

Citation:
Nesterenko DV, Kolesnikova MD, Lyubarskaya AV. Optical differentiation based on the Brewster effect. Computer Optics 2018; 42(5): 758-763. DOI: 10.18287/2412-6179-2018-42-5-758-763.

References:

  1. Goodman JW. Introduction to Fourier Optics. New York: McGraw-hill; 1996. ISBN: 978-0-07-114257-1.
  2. Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N. Performing mathematical operations with metamaterials. Science 2014; 343: 160-163. DOI: 10.1126/science.1242818.
  3. Pors A, Nielsen MG, BozhevolnyiSI. Analog computing using reflective plasmonic metasurfaces. Nano Lett 2014; 15(1): 791-797. DOI: 10.1021/nl5047297.
  4. Hwang Y, Davis TJ. Optical metasurfaces for subwavelength difference operations. Appl Phys Lett 2016; 109(18): 181101. DOI: 10.1063/1.4966666.
  5. Kazanskiy NL, Serafimovich PG, Khonina SN. Use of photonic crystal cavities for temporal differentiation of optical signals. Opt Lett 2013; 38(7): 1149-1151. DOI: 10.1364/OL.38.001149.
  6. Doskolovich LL, Bykov DA, Bezus EA, Soifer VA. Spatial differentiation of optical beams using phase-shifted Bragg grating. Opt Lett 2014; 39(5): 1278-1281.DOI: 10.1364/OL.39.001278.
  7. Golovastikov NV, Bykov DA, Doskolovich LL, Bezus EA. Spatial optical integrator based on phase-shifted Bragg gratings. Opt Commun 2015; 338: 457-460. DOI: 10.1016/j.optcom.2014.11.007
  8. Bykov DA, Doskolovich LL, Bezus EA, Soifer VA. Optical computation of the Laplace operator using phase-shifted Bragg grating. Opt Express 2014; 22(21): 25084-25092. DOI: 10.1364/OE.22.025084.
  9. Golovastikov NV, Bykov DA, Doskolovich LL, Soifer VA. Analytical description of 3D optical pulse diffraction by a phase-shifted Bragg grating. Opt Express 2016; 24(17): 18828-18842. DOI: 10.1364/OE.24.018828.
  10. Kazanskiy NL, Serafimovich PG. Coupled-resonator optical waveguides for temporal integration of optical signals. Opt Express 2014; 22(11): 14004-14013. DOI: 10.1364/OE.22.014004.
  11. Golovastikov NV, Bykov DA, Doskolovich LL. Temporal differentiation and integration of 3D optical pulses using phase-shifted Bragg gratings [In Russian]. Computer Optics 2017; 41(1): 13-21. DOI: 10.18287/2412-6179-2017-41-1-13-21.
  12. Dyachenko PN, Karpeev SV, Fesik EV, Miklyaev YuV, Pavelyev VS, Malchikov GD. The three-dimensional photonic crystals coated by gold nanoparticles. Opt Commun 2011; 284(3): 885-888. DOI: 10.1016/J.OPTCOM. 2010.10.006.
  13. Zhu T, Zhou Y, Lou Y, Ye H, Qiu M, Ruan Z, Fan S. Plasmonic computing of spatial differentiation. Nature Communcations 2017; 8: 15391. DOI: 10.1038/ncomms15391.
  14. Youssefi A, Zangeneh-Nejad F, Abdollahramezani S, Khavasi A. Analog computing by Brewster effect. Opt Lett 2016; 41(15): 3467-3470. DOI: 10.1364/OL.41.003467.
  15. Yeh P, Yariv A, Hong CS. Electromagnetic propagation in periodic stratified media. I. General theory. JOSA 1977; 67(4): 423-438. DOI: 10.1364/JOSA.67.000423.
  16. Nesterenko DV, Hayashi S, Sekkat Z. Asymmetric surface plasmon resonances revisited as Fano resonances. Phys Rev B. 2018; 97(23): 235437. DOI: 10.1103/PhysRevB.97.235437.
  17. Khonina SN, Karpeev SV. Generating inhomogeneously polarized higher-order laser beams by use of DOEs. JOSA A 2011; 28(10): 2115-2123. DOI: 10.1364/JOSAA.28.002115.
  18. Berezny AE, Karpeev SV, Uspleniev GV. Computer-generated holographic optical elements produced by photolithography. Optics and Lasers in Engineering 1991; 15(5): 331-340. DOI: 10.1016/0143-8166(91)90020-T.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20