Investigation of photoinduced formation of microstructures on the surface of carbaseole-containing azopolymer depending on the power density of incident beams
Poplipnov V.V., Ivliev N.A., Khonina S.N., Nesterenko D.V., Vasilev V.S., Achimova E.A.

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia,
Samara National Research University, 443086, Russia, Samara, Moskovskoye Shosse 34,
Institute of Applied Physics, the Academy of Sciences of Moldova, Chisinau, Moldova

 PDF

Abstract:
In this paper we synthesized and measured optical characteristics of an azopolymer based on the polymer N-epoxypropylcarbazole and chromophore 4 - (4-nytrophenylazo)-aniline. Regularities in surface microstructure formation under the influence of a Gaussian beam focused on the synthesized polymer film were shown. With the linearly polarized incident laser beam, the anisotropic formation of the surface microstructures was demonstrated. The dependence of the microstructure formation on the incident beam power density was studied. Also, we experimentally investigated the nonlinear optical effects emerging in the azopolymer structure exposed to a high-intensity laser beam. Nonlinear topographic effects arising during the formation of microstructures by means of linearly and elliptically polarized beams were described.

Keywords:
optical recording materials, azopolymer, photoisomerization, polarization state, surface relief, Gaussian beam.

Citation:
Poplipnov VV, Ivliev NA, Khonina SN, Nesterenko DV, Vasilev VS, Achimova EA. Investigation of photoinduced formation of microstructures on the surface of carbaseole-containing azopolymer depending on the power density of incident beams. Computer Optics 2018; 42(5): 779-785. DOI: 10.18287/2412-6179-2018-42-5-779-785.

References:

  1. Andrews DL. Structured light and its applications: An introduction to phase-structured beams and nanoscale optical forces. London: Academic; 2008. ISBN: 978-0-12-374027-4.
  2. Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated-emission-depletion fluorescence microscopy. Opt Lett 1994; 19(11): 780-782. DOI: 10.1364/OL.19.000780.
  3. Bernet S, Jesacher A, Furhapter S, Maurer C, Ritsch-Marte M. Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt Express 2006; 14(9): 3792-3805. DOI: 10.1364/OE.14.003792.
  4. Aakhte M, Ehsan EA, Muller HAJ. SSPIM: a beam shaping toolbox for structured selective plane illumination microscopy. Sci Rep 2018; 8: 10067.  DOI: 10.1038/s41598-018-28389-8.
  5. Hnatovsky C, Hnatovsky C, Shvedov VG, Shostka N, Rode AV, Krolikowski W. Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses. Opt Lett 2012; 37(2): 226-228. DOI: 10.1364/OL.37.000226.
  6. Anoop KK, Rubano A, Fittipaldi R, Wang X, Paparo D, Vecchione A, Marrucci L, Bruzzese R, Amoruso S. Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate. Appl Phys Lett 2014; 104(24): 241604. DOI: 10.1063/1.4884116.
  7. Syubaev S, Zhizhchenko A, Kuchmizhak A, Porfirev A, Pustovalov E, Vitrik O, Kulchin Yu, Khonina S, Kudryashov S. Direct laser printing of chiral plasmonic nanojets by vortex beams. Opt Express 2017; 25(9): 10214-10223. DOI: 10.1364/OE.25.010214.
  8. Pushkarev D, Shipilo D, Lar’kin A, Mitina E, Panov N, Uryupina D, Ushakov A, Volkov R, Karpeev S, Khonina S, Kosareva O, Savel’ev A. Effect of phase front modulation on the merging of multiple regularized femtosecond filaments. Laser Phys Lett 2018; 15(4): 045402. DOI: 10.1088/1612-202X/aaa9ad.
  9. Arlt J, Hitomi T, Dholakia K. Atom guiding along Laguerre-Gaussian and Bessel light beams. Appl Phys 2000; 71(4): 549-554. DOI: 10.1007/s003400000376.
  10. McGloin D, Garcés-Chávez V, Dholakia K. Interfering Bessel beams for optical micromanipulation. Opt Lett 2003; 28(8): 657-659. DOI: 10.1364/OL.28.000657.
  11. Soifer VA, Kotlyar VV, Khonina SN. Optical microparticle manipulation: advances and new possibilities created by diffractive optics [In Russian]. Phys Part Nucl 2004; 35(6): 733-766.
  12. Reicherter M, Haist T, Wagemann EU, Tiziani HJ. Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Opt Lett 1999; 24(8): 608-610. DOI: 10.1364/OL.24.000608.
  13. Skidanov RV, Khonina SN, Kotlyar VV. Optical micromanipulation using a binary dynamic light modulator. Computer optics 2008; 32(4): 361-365.
  14. Ostrovsky AS, Rickenstorff-Parrao C, Arrizón V. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator. Opt Lett 2013; 38(4): 534-536. DOI: 10.1364/OL.38.000534.
  15. Khilo, N.A. Transformation of the order of Bessel beams in uniaxial crystals / N.A. Khilo, E.S. Petrova, A.A. Ryzhevich // Quantum Electronics. – 2001. – Vol. 31, Issue 1. – P. 85-89. – DOI: 10.1070/QE2001v031n01ABEH001897.
  16. Fadeyeva TA, Shvedov VG, Izdebskaya YV, Volyar AV, Brasselet E, Neshev DN, Desyatnikov AS, Krolikowski W, Kivshar YS. Spatially engineered polarization states and optical vortices in uniaxial crystals. Opt Express 2010. 18(10): 10848-10863. DOI: 10.1364/OE.18.010848.
  17. Khonina SN, Karpeev SV, Paranin VD, Morozov AA. Polarization conversion under focusing of vortex laser beams along the axis of anisotropic crystals. Phys Lett A 2017; 381(30): 2444-2455. DOI: 10.1016/j.physleta.2017.05.025.
  18. Soifer VA, ed. Diffractive optics and nanophotonics. Boca Raton: CRC Press; 2017. ISBN: 978-1-4987-5447-7.
  19. Sekkat Z, Kawata S. Laser nanofabrication in photoresists and azopolymers. Laser & Photonics Reviews 2014; 8(1): 1-26. DOI: 10.1002/lpor.201200081.
  20. Ishitobi H, Tanabe M, Sekkat Z, Kawata S. The anisotropic nanomovement of azo-polymers. Optics Express 2007; 15(2): 652-659. DOI: 10.1364/OE.15.000652.
  21. Rochon P, Gosselin J, Natansohn A, Xie S. Optically induced and erased birefringence and dichroism in azoaromatic polymers. Appl Phys Lett 1992; 60(1): 4-5. DOI: 10.1063/1.107369.
  22. Lee M-J, Jung D-H, Han Y-K. Photo-responsive polymers and their applications to optical memory. Molecular Crystals and Liquid Crystals 2006; 444(1): 41-50. DOI: 10.1080/15421400500377602.
  23. Achimova E, Abaskin V, Claus D, Pedrini G, Shevkunov I, Katkovnik V. Noise minimised high resolution digital holographic microscopy applied to surface topography. Computer Optics 2018; 42(2): 267-272. DOI: 10.18287/2412-6179-2018-42-2-267-272.
  24. Chida T, Kawabe Y. Transient grating formation in azo-doped polymer and its application to DNA-based tunable dye laser. Optical Materials 2014; 36(4): 778-781. DOI: 10.1016/j.optmat.2013.11.027.
  25. Meshalkin A, Robu S, Achimova E, Prisacar A, Shepel D, Abaskin V, Triduh G. Direct photoinduced surface relief formation in carbazole-based azopolymer using polarization holographic recording. Journal of Optoelectronics and Advanced Materials 2016; 18(9-10): 763-768.
  26. Andries A, Abaskin V, Achimova E, Meshalkin A, Prisacar A, Sergheev S, Robu S, Vlad L. Application of carbazole-containing polymer materials as recording media. Phys Status Solidi A 2011; 208(8): 1837-1840. DOI: 10.1002/pssa.201084040.
  27. Bian S, Williams JM, Kim DY, Li L, Balasubramanian S, Kumar J, Tripathy S. Photoinduced surface deformations on azobenzene polymer films. J Appl Phys 1999; 86(8): 4498-4508. DOI: 10.1063/1.371393.
  28. Khonina SN, Golub I. Optimization of focusing of linearly polarized light. Opt Lett 2011; 36(3): 352-354. DOI: 10.1364/OL.36.000352.
  29. Khonina SN, Karpeev SV, Alferov SV, Savelyev DA, Laukkanen J, Turunen J. Experimental demonstration of the generation of the longitudinal E-field component on the optical axis with high-numerical-aperture binary axicons illuminated by linearly and circularly polarized beams. J Opt 2013; 15(8): 085704. DOI: 10.1088/2040-8978/15/8/085704.
  30. Khonina SN, Golub I. Time behavior of focused vector beams. J Opt Soc Am A 2016; 33(10): 1948-1954. DOI: 10.1364/JOSAA.33.001948.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20