Optical waveguide on the basis of a layered magnetoactive metamaterial
Panyaev I.S., Sannikov D.G.

Ulyanovsk State University (UlSU), Ulyanovsk, Russia

 PDF

Abstract:
Guiding properties of an optical waveguide based on a layered metamaterial formed by layers of iron-yttrium garnet and aluminum-yttrium garnet, magnetized to saturation are considered. Dispersion equations for the waveguide TE and TM modes in the structure were obtained using the approximation of an effective medium and solving the boundary problem (electromagnetic method), and also by means of a 4×4 matrix method. Dispersion spectra of the propagation constant dependence on the cyclic frequency ω(β) for different types of structures are found, localization coefficients of the orthogonal modes in the guiding layer are also derived and their comparative analysis is carried out. The advantages of the approximate electromagnetic method are shown in comparison with the exact 4x4 matrix method. The results of the work can find an application in developing new integrated optical devices for optical signal processing based on layered metamaterials.

Keywords:
optical waveguide, layered metamaterial, photonic crystal.

Citation:
Panyaev IS, Sannikov DG. Optical waveguide on the basis of a layered magnetoactive metamaterial 2018; 42(5): 807-815. DOI: 10.18287/2412-6179-2018-42-5-807-815.

References:

  1. Goncharenko AM, Karpenko VA. Fundamentals of the theory of optical waveguides [In Russian]. Moscow: "Editorial URSS" Publisher; 2004. ISBN: 5-354-00818-2.
  2. Yeh C, Shimabukuro FI. The essence of dielectric waveguides, New York: Springer Science+Business Media; 2008. ISBN: 978-0-387-30929-3.
  3. Panyaev IS, Dadoenkova NN, Dadoenkova YS, Rozhleys IA, Krawczyk M, Lyubchanskii IL, Sannikov DG. Four-layer nanocomposite structure as an effective optical waveguide switcher for near-IR regime, J Phys D: Appl Phys 2016; 49(43): 435103. DOI: 10.1088/0022-3727/49/43/435103.
  4. Dutta HS, Goyal AK, Srivastava V, Pal S. Coupling light in photonic crystal waveguides: A review. Photonics and Nanostructures – Fundamentals and Applications 2016; 20: 41-58. DOI: 10.1016/j.photonics.2016.04.001.
  5. Schulz SA, O’Faolain L, Beggs DM, White TP, Melloni A, Krauss TF. Dispersion engineered slow light in photonic crystals: A comparison. J Opt 2010; 12(10): 104004. DOI: 10.1088/2040-8978/12/10/104004.
  6. Shen H, Wang Z, Wu Y, Yang B. One-dimensional photonic crystals: fabrication, responsiveness and emerging applications in 3D construction. RSC Adv 2016; 6(6): 4505-4520. – DOI: 10.1039/C5RA21373H.
  7. Bian L-A, Liu P, Li G, Lu Z, Liu C. Characterization for one-dimensional graphene-embedded photonic crystals at terahertz frequencies. Opt Quant Electron 2016; 48: 436. DOI: 10.1007/s11082-016-0707-7.
  8. Al-Sheqefi FUY, Belhadj W. Photonic band gap characteristics of one-dimensional graphene-dielectric periodic structures. Superlattices and Microstructures 2015; 88: 127-138. DOI: 10.1016/j.spmi.2015.09.009.
  9. Madani A, Roshan Entezar SR. Optical properties of one-dimensional photonic crystals containing graphene sheets, Physica B Condensed Matter 2013; 431: 1-5. DOI: 10.1016/j.physb.2013.08.041.
  10. Tolmachev VA, Perova TS, Berwick K. Design of one-dimensional composite photonic crystals with an extended photonic band gap. J Appl Phys 2006; 99: 033507. DOI: 10.1063/1.2165401.
  11. Celanovic I, O’Sullivan F, Ilak M, Kassakian J, Perreault D. Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications. Opt Lett 2004; 29(3): 863-865. DOI: 10.1364/OL.29.000863.
  12. Lyubchanskii IL, Dadoenkova NN, Lyubchanskii MI, Shapovalov EA, Rasing T. Magnetic photonic crystals, J Phys D: Appl Phys 2003; 36(18): R277-R287. DOI: 10.1088/0022-3727/36/18/R01.
  13. Belotelov VI, Zvezdin AK. Magneto-optical properties of photonic crystals. J Opt Soc Am B 2005; 22(1): 286-292. DOI: 10.1364/JOSAB.22.000286.
  14. Dadoenkova NN, Panyaev IS, Sannikov DG, Dadoenkova Y, Rozhleys IA, Krawczyk M, Lyubchanskii IL. Complex waveguide based on a magneto-optic layer and a dielectric photonic crystal. Superlattices and Microstructures 2016; 100: 45-56. DOI: 10.1016/j.spmi.2016.08.050.
  15. Sylgacheva D, Khokhlov N, Kalish A, Dagesyan S, Prokopov A, Shaposhnikov A, Berzhansky V, Nur-E-Alam M, Vasiliev M, Alameh K, Belotelov V. Transverse magnetic field impact on waveguide modes of photonic crystals. Opt Lett 2016; 41(16): 3813-3816. DOI: 10.1364/OL.41.003813.
  16. Sylgacheva DA, Khokhlov NE, Kalish AN, Belotelov VI. Magnetic control of waveguide modes of Bragg structures, J Phys: Conf Series 2016; 714(1): 12016. DOI: 10.1088/1742-6596/714/1/012016.
  17. Anemogiannis E, Glytsis EN. Multilayer waveguides: efficient numerical analysis of general structures. J Lightw Technol 1992; 10(10): 1344-1351. DOI: 10.1109/50.166774.
  18. Inoue M, Fujikawa R, Baryshev A, Khanikaev A, Lim P, Uchida H, Aktsipetrov O, Fedyanin A, Murzina T, Granovsky A. Magnetophotonic crystals. J Phys D: Appl Phys 2006; 39: R151-R161. DOI: 10.1088/0022-3727/39/8/R01.
  19. Inoue M, Baryshev AV, Levy M. Magnetophotonics: From theory to applications. Heidelberg: Springer-Verlag; 2013. ISBN: 978-3-642-35508-0.
  20. Zvezdin AK, Kotov VA. Modern magnetooptics and magnetooptical materials. New York: Taylor & Francis Group; 1997. ISBN: 978-0-7503-0362-X.
  21. Inoue M, Arai K, Fujii T, Abe M. Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers. J Appl Phys 1998; 83(11): 6768-6770. DOI: 10.1063/1.367789.
  22. Priye V, Pal BP, Thyagarajan K. Analysis and design of a novel leaky YIG film guided wave optical isolator. J Lightw Technol 1998; 16(2): 246-250. DOI: 10.1109/50.661017.
  23. Valligatla S, Chiasera A, Varas S, Bazzanella N, Rao DN, Righini GC, Ferrari M. High quality factor 1-D Er3+-activated dielectric microcavity fabricated by RF-sputtering. Opt Express 2012; 20(19): 21214-21222. DOI: 10.1364/OE.20.021214.
  24. Tamir T, ed. Integrated optics. Berlin, Heidelberg: Springer-Verlag; 1975. ISBN: 978-0-662-43210-5.
  25. Boudrioua A. Photonic waveguides: Theory and applications. London: Wiley-ISTE, 2009. ISBN: 978-1-848-21027-1.
  26. Rytov SM. Electromagnetic properties of a finely stratified medium. Soviet Physics Journal of Experimental and Theoretical Physics 1956; 2(3): 446-475.
  27. Brekhovskikh LM. Waves in layered media. 2nd ed. New York: Academic, 1980. ISBN: 978-0-12-130560-4.
  28. Agranovich VM. Dielectric permeability and influence of external fields on optical properties of superlattices, Solid State Communications 1991; 78(8): 747-750. DOI: 10.1016/0038-1098(91)90856-Q.
  29. Sannikov DG, Sementsov DI. Anisotropic planar waveguide with layered-periodic filling. Proceedings of the III International Conference “Optics of heterogeneous structures-2011” 2011: 77-79.
  30. Dadoenkova NN, Dadoenkova YS, Panyaev IS, Sannikov DG, Lyubchanskii IL. One-dimensional dielectric bi-periodic photonic structures based on ternary photonic crystals. J Appl Phys 2018; 123(4): 1-9. DOI: 10.1063/1.5011637.
  31. Zelmon DE, Small DL, Page R. Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 μm. Appl Opt 1998; 37(21): 4933-4935. DOI: 10.1364/AO.37.004933.
  32. Johnson B, Walton AK. The infra-red refractive index of garnet ferrites. British Journal of Applied Physics 1965; 16(4): 475-477. DOI: 10.1088/0508-3443/16/4/310.
  33. Torfeh M, Le Gall H. Theoretical analysis of hybrid modes of magnetooptical waveguides. Physica Status Solidi 1981; 63(1): 247-258. DOI: 10.1002/pssa.2210630133.
  34. Sposito A, May-Smith TC, Stenning GBG, de Groot PAJ, Eason RW. Pulsed laser deposition of high-quality μm-thick YIG films on YAG. Optical Materials Express 2013; 3(5): 624-632. DOI: 10.1364/OME.3.000624.
  35. Mizoguchi Y, Kagawa M, Syono Y, Hirai T. Film Synthesis of Y3Al5O12 and Y3Fe5O12 by the spray-inductively coupled plasma technique. Journal of the American Ceramic Society 2001; 84(3): 651-653. DOI: 10.1111/j.1151-2916.2001.tb00717.x.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20