Calculation of effective mode field area of photonic crystal fiber with digital image processing algorithm
Tan Y.L., Wang H.L., Wang Y.R.

Department of Statistics, College of Science, North China University of Science and Technology, Tangshan, Hebei 063210, China
Department of Basic, Tangshan College, Tangshan, Hebei 063000, China

 PDF

Abstract:
Photonic crystal fiber as a new type of optical fiber has been extensively applied because of its unique properties. The effective mode area of optical fiber is an important parameter, which has a great influence on the performance of optical fiber. In this study, digital image processing algorithm was used for preprocessing to improve the accuracy of calculation of mode field area. Then the effective mode field area of optical fiber was calculated using Matlab based Gauss fitting method. Take single-mode fiber G.652 as an example, the effective mode field area was calculated using the traditional algorithm and digital image processing algorithm respectively. It was found that the results obtained using digital image processing algorithm were within the allowed error range, suggesting the effectiveness of the algorithm. Then the calculation of the effective mode area of the triangular lattice photonic crystal fiber further verified the reliability of the algorithm.

Keywords:
photonic crystal fiber, effective mode field area, image processing.

Citation:
Tan YL, Wang HL, Wang YR. Calculation of effective mode field area of photonic crystal fiber with digital image processing algorithm. Computer Optics 2018; 42(5): 816-821. DOI: 10.18287/2412-6179-2018-42-5-816-821.

References:

  1. Fu HY, Wu C, Tse MLV, Zhang L, Cheng KCD, Tam HY, Guan BO, Lu C. High pressure sensor based on photonic crystal fiber for downhole application. Appl Opt 2010; 49(14): 2639-2643. DOI: 10.1364/AO.49.002639.
  2. Deng M, Tang C-P, Zhu T, Rao Y-J. Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber. Opt Commun 2011; 284(12): 2849-2853. DOI: 10.1016/j.optcom.2011.02.061.
  3. Gao R, Jiang Y, Abdelaziz S. All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers. Opt Lett 2013; 38(9): 1539-1541. DOI: 10.1364/OL.38.001539.
  4. Matsui T, Sakamoto T, Tsujikawa K, Tomita S, Tsubokawa M. Single-mode photonic crystal fiber design with ultralarge effective area and low bending loss for ultrahigh-speed WDM transmission. J Lightw Technol 2011; 29(4): 511-515. DOI: 10.1109/JLT.2010.2089600.
  5. Napierala M, Nasilowski T, Beres-Pawlik E, Mergo P, Berghmans F, Thienpont H. Large-mode-area photonic crystal fiber with double lattice constant structure and low bending loss. Opt Express 2011; 19(23): 22628-22636. DOI: 10.1364/OE.19.022628.
  6. Miyagi K, Namihira Y, Razzak SMA, Kaijage SF, Begum F. Measurements of mode field diameter and effective area for photonic crystal fibers by far field scanning technique. Optical Review 2010; 17(4): 388-392. DOI: 10.1007/s10043-010-0072-x.
  7. Hayashi T, Tamura Y, Nagashima T, Yonezawa K, Taru T, Igarashi K, Soma D, Wakayama Y, Tsuritani T. Effective area measurement of few-mode fiber using far field scan technique with Hankel transform generalized for circularly-asymmetric mode. Opt Express 2018; 26(9): 11137-11146. DOI: 10.1364/OE.26.011137.
  8. Mishra, Singh SS, Vinod K. Polarization maintaining highly birefringent small mode area photonic crystal fiber at telecommunication window. J Microw Optoelectron Electromagn Appl 2011; 10(1): 33-41. DOI: 10.1590/S2179-10742011000100004.
  9. Medjouri A, Simohamed LM, Ziane O, Boudrioua A. Analysis of a new circular photonic crystal fiber with large mode area. Optik 2015; 126(24): 5718-5724. DOI: 10.1016/j.ijleo.2015.09.035.
  10. Abdelaziz I, Abdelmalek F, Ademgil H, Haxha S, Gorman T, Bouchriha H. Enhanced effective area photonic crystal fiber with novel air hole design. J Lightw Technol 2010; 28(19): 2810-2817. DOI: 10.1109/JLT.2010.2064758.
  11. Saini TS, Kumar A, Sinha RK. Triangular-core large-mode-area photonic crystal fiber with low bending loss for high power applications. Appl Opt 2014; 53(31): 7246-7251. DOI: 10.1364/AO.53.007246.
  12. Liu Y, Dong X, Liu Z, Sun B, Ji J, Yu X. Splicing and end facet optimization of large-mode-area photonic crystal fiber for high power application. 2017 16th International Conference on Optical Communications and Networks (ICOCN) 2017: 1-3. DOI: 10.1109/ICOCN.2017.8121275.
  13. Miyagi K, Namihira Y, Kasamatsu Y, Hossain MA. Dynamic control of mode field diameter and effective area by germanium doping of hexagonal photonic crystal fibers. Optical Review 2013; 20(4): 327-331. DOI: 10.1007/s10043-013-0059-5.
  14. Filipenko O, Sychova O, Ponomaryova G. Determining of the photonic-crystal fibers mode field size at his near field image. Third International Scientific-Practical Conference Problems of Infocommunications Science and Technology (PIC S&T) 2017: 81-83. DOI: 10.1109/INFOCOMMST.2016.7905342.
  15. Thakur HV, Nalawade SM, Gupta S, Kitture R, Kale SN. Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection. Appl Phys Lett 2011; 99(16): 161101. DOI: 10.1063/1.3651490.
  16. Yu Y, Li X, Hong X, Deng Y, Song K, Geng Y, Wei H, Tong W. Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling. Opt Express 2010; 18(15): 15383-15388. DOI: 10.1364/OE.18.015383.
  17. Qiu S-J, Chen Y, Xu F, Lu Y-Q. Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity. Opt Lett 2012; 37(5): 863-865. DOI: 10.1364/OL.37.000863.
  18. Vigneswaran D, Ayyanar N, Sharma M, Sumathi M, Rajan MSM, Porsezian K. Salinity sensor using photonic crystal fiber. Sensors and Actuators A: Physical 2018; 269: 22-28. DOI: 10.1016/j.sna.2017.10.052.
  19. Li H-T, Wang X-L, She L-J, Chen D-R. Dual-core photonic crystal fiber for hydrostatic pressure sensing. Acta Photonica Sinica 2017; 46(7): 0706007. DOI: 10.3788/gzxb20174607.0706007.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20