Comparative study of description algorithms for complex-valued gradient fields of digital images using linear dimensionality reduction methods

Dmitriev E.A., Myasnikov V.V.

Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Samara, Russia;
IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia

 PDF

Abstract:
The paper presents an analysis of various approaches to constructing descriptions for the gradient fields of digital images. The analyzed approaches are based on the well-known methods for data dimensionality reduction, such as Principal (PCA) and Independent (ICA) Component Analysis, Linear Discriminant Analysis (LDA). We apply these methods not to the original image, represented as a two-dimensional field of brightness (a halftone image), but to its secondary representation in the form of a two-dimensional gradient field, that is, a complex-valued image. In this case, approaches based on using both the entire gradient field and only its phase component are considered. In addition, two independent ways of forming the final description of the original object are considered: using expansion coefficients of the gradient field in a derived basis and using an original authors' design that is called model-oriented descriptors. With the latter, the number of real coefficients used in the description of the original object can be halved. The studies are conducted via solving a face recognition problem. The effectiveness of the analyzed methods is demonstrated by applying them to images from Extended Yale Face Database B. The comparison is made using a nearest neighbor's classifier.

Keywords:
face recognition, PCA, ICA, LDA, model-oriented descriptors, The Extended Yale Database B, image description.

Citation:
Dmitriev EA, Myasnikov VV. Comparative study of description algorithms for complex-valued gradient fields of digital images using linear dimensionality reduction methods. Computer Optics 2018; 42(5): 822-828. – DOI: 10.18287/2412-6179-2018-42-5-822-828.

References:

  1. Vasan KK, Surendiran B. Dimensionality reduction using principal component analysis for network intrusion detection. Perspectives in Science 2016; 8: 510-512. DOI: 10.1016/j.pisc.2016.05.010.
  2. Wang J, Chang C-I. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans Geosci Remote Sens 2006; 44(6): 1586-1600. DOI: 10.1109/TGRS.2005.863297.
  3. Phinyomark A, Hu H, Phukpattaranont P, Limsakul C. Application of linear discriminant analysis in dimensionality reduction for hand motion classification. Meas Sci Rev 2012; 12(3): 82-89. DOI: 10.2478/v10048-012-0015-8.
  4. Delac K, Grgic M, Grgic S. Independent comparative study of PCA, ICA, and LDA on the FERET data set. Int J Imaging Syst Technol 2005; 15(5): 252-260. DOI: 10.1002/ima.20059.
  5. Subasi A, Gursoy MI. EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst Appl 2010; 37(12): 8659-8666. DOI: 10.1016/j.eswa.2010.06.065.
  6. Hese SK, Banwaskar MR. Performance of PCA and LDA for Face Recognition. International Journal of Advanced Research in Electronics and Communication Engineering 2013; 2(2): 149-154.
  7. Fernandes S, Bala J. Performance analysis of PCA-based and LDA-based algorithms for face recognition. International Journal of Signal Processing Systems 2013; 1(1): 1-6. DOI: 10.12720/ijsps.1.1.1-6.
  8. Schroff F, Kalenichenko D, Philbin J. Facenet: A unified embedding for face recognition and clustering. Proc CVPR 2015: 815-823. DOI: 10.1109/CVPR.2015.7298682.
  9. Soifer VA, ed. Computer image processing, Part II: Methods and algorithms. Saarbrücken: VDM Verlag; 2009. ISBN: 978-3639175455.
  10. Myasnikov VV. Description of images using model-oriented descriptors // Computer Optics 2017; 41(6): 888-896. DOI: 10.18287/2412-6179-2017-41-6-888-896.
  11. Myasnikov VV. Model-based gradient field descriptor as a convenient tool for image recognition and analysis [In Russian]. Computer Optics 2012; 36(4): 596-604.
  12. Georghiades AS, Belhumeur PN, Kriegman DJ. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intelligence 2001; 23(6): 643-660. DOI: 10.1109/34.927464.
  13. Lee KC, Ho J, Kriegman D. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intelligence 2005; 27(5): 684-698. DOI: 10.1109/TPAMI.2005.92.
  14. Kanopoulos N. Design of an image edge detection filter using the sobel operator // IEEE Journal of Solid State Circuits 1988; 23(2): 358-367. DOI: 10.1109/4.996.
  15. Fukunaga K. Introduction to statistical pattern recognition. San Diego: Academic Press; 1990. ISBN: 0-12-269851-7.
  16. Tzimiropoulos G, Zafeiriou S, Pantic M. Principal component analysis of image gradient orientations for face recognition. Face and Gesture 2011: 553-558. DOI: 10.1109/FG.2011.5771457.
  17. Hyvärinen A, Karhunen J, Oja E. Independent component analysis. New York: Wiley-Interscience; 2001. ISBN: 978-0-471-40540-5.
  18. Ruan Z, Li L, Qian G. On extending the complex FastICA algorithms to noisy data. Neural Networks 2014; 60: 194-202. DOI: 10.1016/j.neunet.2014.08.013.
  19. Turk M, Pentland A. Face recognition using eigenfaces. Proc IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1991: 586-591. DOI: 10.1109/CVPR.1991.139758.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20