Metric of fine structures distortions of compressed images
Sai S.V.
Pacific National University, Khabarovsk, Russia
PDF
Abstract:
The article proposes a new Metric of Fine Structures Distortion (MFSD) in compressed images. The peculiarity of the metric is that it is based on the algorithm for identifying fine image structures using a normalized N-CIELAB system, which allows us to estimate distortions while taking into account the properties of contrast sensitivity of the eye. Experimental results of the estimation of distortions of test images are presented depending on the degree of compression and the quality parameter in the JPEG and JPEG2000 codecs according to the MFSD metric and the traditional metrics PSNR and SSIM. Based on the results of a comparative analysis of MFSD with subjective assessments of the quality of the compressed JPEG and JPEG2000 images, a new objective criterion for the high quality reproduction of fine structures of compressed images was obtained. The theoretical and experimental justification of the objectivity of the new criterion is presented based on the results of processing and analysis of distortions of the compressed test photorealistic images.
Keywords:
image analysis, fine structures, distortion metric.
Citation:
Sai SV. Metric of fine structures distortions of compressed images. Computer Optics 2018; 42(5): 829-837. DOI: 10.18287/2412-6179-2018-42-5-829-837.
References:
- Lin W, Jay Kuo C-C. Perceptual visual quality metrics: A survey. Journal of Visual Communication and Image Representation 2011; 22(4): 297-312. DOI: 10.1016/j.jvcir.2011.01.005.
- Mittal A, Moorthy AK, Bovik A. No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing. 2012; 21(12): 4695-4708. DOI: 10.1109/TIP.2012.2214050.
- Wang Z, Li Q. Video quality assessment using a statistical model of human visual speed perception. J Opt Soc Am A 2007; 24(12): 61-69. DOI: 10.1364/JOSAA.24.000B61.
- Dosselmann R, Yang XD. No-reference image quality assessmentusing level-of-detail. Technical Report CS 2011-2; May 2011. ISBN: 978-0-7731-0695-6.
- Laboratory for image & video engineering. Source: <http://live.ece.utexas.edu/research/Quality/>.
- Picture quality analyzers Tektronix. Source: <http://ru.tek.com/picture-quality-analyzer>.
- Koltsov PP, Osipov AS, Kutsaev AS, Kravchenko AA, Kotovich NV, Zakharov AV. On the quantitative performance evaluation of image analysis algorithms [In Russian]. Computer Optics 2015; 39(4): 542-556. DOI: 10.18287/0134-2452-2015-39-4-542-556.
- Gonzalez RC, Woods RE. Digital image processing. 3rd ed. Upper Saddle River, NJ: Prentice Hall; 2008. ISBN: 978-0-13-168728-8.
- Fairchild MD. Color appearance models. In Book: Fairchild MD, ed. Color appearance models. Chap 10. Chichester: John Wiley & Sons; 2005. DOI: 10.1002/9781118653128.ch10.
- Zhang X, Silverstein D, Farrell J, Wandell B. Color image quality metric S-CIELA Bandits application on halftone texture visibility. Proc IEEE COMPCON 97: Digest of Papers1997; 44-48. DOI: 10.1109/CMPCON.1997.584669.
- Sai SV, Sorokin NYu, Shoberg AG. Segmentation of fine details in the CIELAB. WSCG 2016 – 24th Conference on Computer Graphics, Visualization and Computer Vision 2016: 155-162.
- Sai SV. Fine-detail level of photorealistic images: Application in the multimedia system. 2015 International Siberian Conference on Control and Communications (SIBCON) 2015. DOI: 10.1109/SIBCON.2015.7147204.
- Wyszecki G. Uniform color scales: CIE 1964 U*V*W* conversion of OSA committee selection. JOSA 1975; 65(4): 456-460. DOI: 10.1364/JOSA.65.000456.
- Judd DB, Wyszecki G. Color in business, science and industry. New York: John Wiley & Sons; 1975. ISBN: 978-0-471-45212-6.
- Pratt WK. Digital image processing. 3rd ed. New York: John Wiley & Sons; 2001. ISBN: 0-471-37407-5.
- Wang Z, Bovik AC, Sheikh HR and Simoncelli EP. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 2004; 13(4): 600-612. DOI: 10.1109/TIP.2003.819861.
- Barten PGJ. Contrast sensitivity of the human eye and its effects on image quality. Knegsel: HV Press; 1999. ISBN: 978-0-8194-3496-8.
- LIVE image quality assessment database. Source: <http://live.ece.utexas.edu/research/quality>.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20