Spectral and spatial super-resolution method for Earth remote sensing image fusion
Belov A.M., Denisova A.Y.
Samara National Research University, 34, Moskovskoye shosse, 443086, Samara, Russia
PDF
Abstract:
In the article we propose a spatial and spectral super-resolution algorithm for a set of multichannel images obtained by various Earth remote sensing detectors. We regard the result of the algorithm as a model of an ideal data source, which has a better accuracy of the observed terrain representation than each of the input images having lower spatial and spectral resolution. The proposed algorithm utilizes a method of gradient descent and applies a refined model of image observation, including both spectral and spatial down-sampling and up-sampling. The article describes an experimental study of the proposed algorithm and a comparison of the quality of its work with bilinear interpolation of low-resolution images. The practical application of the proposed algorithm consists in the joint processing of remote sensing data of various levels, which makes it possible to erase the boundaries that arise from the design differences of imaging sensors.
Keywords:
super-resolution, remote sensing data, gradient descent method, regularization.
Citation:
Belov AM, Denisova AY. Spectral and spatial super-resolution method for Earth remote sensing image fusion. Computer Optics 2018; 42(5): 855-863. – DOI: 10.18287/2412-6179-2018-42-5-855-863.
References:
- Fattal R. Image upsampling via imposed edge statistics. ACM Transactions on Graphics. 2007; 26(3): 95. DOI: 10.1145/1276377.1276496.
- Park SC, Park MK, Kang MG. Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine 2003; 20(3): 21-36. DOI: 10.1109/MSP.2003.1203207.
- Hardie R. A fast image super-resolution algorithm using an adaptive Wiener filter. IEEE Transactions on Image Processing 2007; 16(12): 2953-2964. DOI: 10.1109/TIP.2007.909416.
- Farsiu S, Robinson MD, Elad M, Milanfar P. Fast and robust multiframe super resolution. IEEE Transactions on Image Processing 2004; 13(10): 1327-1344. DOI: 10.1109/TIP.2004.834669.
- Farsiu S, Robinson D, Elad M, Milanfar P. Fast and robust super-resolution. Proceedings of the International Conference on Image Processing 2003; 3: 291-294. DOI: 10.1109/ICIP.2003.1246674.
- Krylov A, Nasonov A. Adaptive total variation deringing method for image interpolation. Proceedings of 15th International Conference on Image Processing (ICIP’08) 2008: 2608-2611. DOI: 10.1109/ICIP.2008.4712328.
- Akgun T, Altunbasak Y, Mersereau RM. Super-resolution reconstruction of hyperspectral images. IEEE Trans Image Proc 2005; 1411): 1860-1875. DOI: 10.1109/TIP.2005.854479.
- Li L, Wang W, Luo H, Ying S. Super-resolution reconstruction of high-resolution satellite ZY-3 TLC images. Sensors 2017; 17(5): 1062. DOI: 10.3390/s17051062.
- Song H, Huang B, Liu Q, Zhang K. Improving the spatial resolution of landsat TM/ETM+ through fusion with SPOT5 images via learning-based super-resolution. IEEE Transactions on Geoscience and Remote Sensing 2015; 53(3): 1195-1204. DOI: 10.1109/TGRS.2014.2335818.
- Gong R, Wang Y, Cai Y, Shao X. How to deal with color in super resolution reconstruction of images. Opt Express 2017; 25(10): 11144-11156. DOI: 10.1364/OE.25.011144.
- Freeman WT, Jones TR, Pasztor EC. Example-based super-resolution. IEEE Computer Graphics and Applications 2002; 22(2): 56-65. DOI: 10.1109/38.988747.
- Karch BK, Hardie RC. Adaptive Wiener filter super-resolution of color filter array images. Opt Express 2013; 21(16): 18820-18841. DOI: 10.1364/OE.21.018820.
- Jia G, Hueni A, Tao D, Geng R, Schaepman ME, Zhao H. Spectral super-resolution reflectance retrieval from remotely sensed imaging spectrometer data. Opt Express 2016; 24(17): 19905-19919. DOI: 10.1364/OE.24.019905.
- Sun D, Roth S, Black MJ. Secrets of optical flow estimation and their principles. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2010: 2432-2439. DOI: 10.1109/CVPR.2010.5539939.
- Adiv G. Determining three-dimensional motion and structure from optical flow generated by several moving objects. IEEE Trans Pattern Anal Mach Intell 1985; 7(4): 384-401. DOI: 10.1109/TPAMI.1985.4767678.
- Soifer VA, ed. Methods for computer design of diffractive optical elements. New York: John Wiley & Sons, Inc; 2002. ISBN: 978-0-471-09533-0.
- Moiseev N, Ivanilov Y, Stolyarova E. Optimization methods [In Russian]. Moscow: “Nauka” Publisher; 1978.
- Farsiu S, Elad M, Milanfar P. Multiframe demosaicing and super-resolution of color images. IEEE Transactions on Image Processing 2006; 15(1): 141-159. DOI: 10.1109/TIP.2005.860336.
- Vane G, Green RO, Chrien TG, Enmark HT, Hansen EG, Porter WM. The airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sensing of Environment 1993; 44(2-3): 127-143. DOI: 10.1016/0034-4257(93)90012-M.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20