Discrete orthogonal transforms with bases generated by self-similar sequences
Chernov V.M.

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia;
Samara National Research University, Moskovskoye shosse, 34, 443086, Samara, Russia

 PDF

Abstract:
New bases of discrete orthogonal transforms associated with some recursive processes and possessing a property of self-similarity are introduced and investigated in the paper. Sufficient conditions of orthogonality of a system of basic functions are proved. For transforms with the introduced bases, fast algorithms of the transforms are synthesized. The relationship between the considered bases and the analytic properties of generating Dirichlet series is discussed.

Keywords:
discrete orthogonal transformations, self-similarity, generating Dirichlet series.

Citation:
Chernov VM. Discrete orthogonal transforms with bases generated by self-similar sequences. Computer Optics 2018; 42(5) 904-911. DOI: 10.18287/2412-6179-2018-42-5-904-911.

References:

  1. Postnikov AG. Introduction to analytic number theory. American Mathematical Society; 1988. ISBN: 0-8218-4521-7.
  2. Bieberbach L. Analytische forsetzung. Berlin, Heidelberg: Springer Verlag; 1955.
  3. Wang R. Introduction to orthogonal transforms: With Applications in data processing and analysis. Cambridge: Cambridge University Press; 2012. ISBN: 978-0-521-51688-4.
  4. Chernov VM. On a class of Dirichlet series with finite Lindelef functions [In Russian]. Research on number theory 1982; 8: 92-95.
  5. Chudakov NG. Analytical criteria for the periodicity of the functions [In Russian]. Theses of the all-Union conference “Problems of analytical number theory and its applications” 1974: 302-303.
  6. Chudakov NG. On a certain class of Dirichlet series [In Russian]. In Book: Number theory, Kuibyshev, 1975. P. 53–57.
  7. Chernov VM. Some spectral properties of fractal curves. Machine Graphics and Vision 1996; 5(1/2): 413-422.
  8. Chernov VM. Tauber theorems for Dirichlet series and fractals. Proceedings of 13th International Conference on Pattern Recognition 1996; 2(B): 656-661. DOI: 10.1109/ICPR.1996.546905.
  9. Titchmarsh TC. Introduction to the theory of Fourier's integrals. Oxford: Oxford University Press; 1937.
  10. Chandrasekharan К, Minakshisundaram S. Typical means. Oxford: Oxford University Press; 1952.
  11. Chandrasekharan K. Arithmetical functions. Berlin, Heidelberg: Springer-Verlag, 1970. ISBN: 978-3-642-50028-2.
  12. Hasse H. Ein Summierungsverfahren für die Riemannsche ζ-Reihe. Mathematische Zeitschrift 1930; 32(1): 458-464. DOI: 10.1007/BF01194645.
  13. Mezo I, Dil A. Hyperharmonic series involving Hurwitz zeta function. Journal of Number Theory 2010; 130(2): 360-369. DOI: 10.1016/j.jnt.2009.08.005.
  14. Chernov VM, Kasparyan MS. Discrete orthogonal transforms on fundamental domains of canonical number systems. Computer Optics 2013; 37(4): 484-487.
  15. Karagiannis Т, Molle M, Faloutsos A, Broido A. A nonstationary poisson view of internet traffic. IEEE INFOCOM 2004; 3(7-11): 1558-1569. DOI: 10.1109/INFCOM.2004.1354569.
  16. Taqqu M, Willinger W, Sherman R. Proof of a fundamental result in self-similar traffic modeling. ACM SIGCOMM Computer Communication Review 1997; 27(2): 5-23. DOI: 10.1145/263876.263879.
  17. Hastings KJ. Introduction to financial mathematics. Boca Raton, London, New York: CRC Press; 2015. ISBN: 978-1-4987-2390-9.
  18. Hendriks D, Dannenberg FGW, Endrullis J, Dow M, Klop JW. Arithmetic self-similarity of infinite sequences. arXiv:1201.3786.
  19. Odagaki T, Kaneko M. Self-similarity of binary quasiperiodic sequences. Journal of Physics A: Mathematical and General 1994; 27(5): 1683-1690. DOI: 10.1088/0305-4470/27/5/030.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20