Description of images using a configuration equivalence relation
Myasnikov V.V.
Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Samara, Russia,
IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia
PDF
Abstract:
An approach to constructing a description of data and images based on the search for an optimal configuration (permutation) of their components (pixels, regions, feature vectors, etc.) is proposed. The quality criterion of the configuration, which may be selected in accordance with the application, determines the concept of optimal configuration. With specific configurations, the whole set of analyzed data / images is broken down into equivalent subclasses characterized by identical descriptors. Issues of invariant description, robustness of the proposed presentation, and the relationship of the proposed approach with the existing ones (Local Binary Patterns (LBP) and image representation by sign data) are considered. By way of illustration, an applied problem is solved using the proposed approach.
Keywords:
description of digital images, relations, rearrangement, configuration, local binary patterns, sign representation of images.
Citation:
Myasnikov VV. Description of images using a configuration equivalence relation. Computer Optics 2018; 42(6): 998-1007. DOI: 10.18287/2412-6179-2018-42-6-998-1007.
References:
- Soifer VA, ed. Computer image processing, Part II: Methods and algorithms. Saarbrücken: VDM Verlag; 2009. ISBN: 978-3639175455.
- Ballard DH, Brown CM. Computer vision. Englewood Cliffs, NJ: Prentice-Hall Inc, 1982. ISBN: 978-0-13-165316-0.
- He D-C, Wang L. Texture unit, texture spectrum, and texture analysis. IEEE Transactions on Geoscience and Remote Sensing 1990; 28(4): 509-512. DOI: 10.1109/TGRS.1990.572934.
- Ojala T, Pietikäinen M, Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. Proc ICPR 1994; 1: 582-585. DOI: 10.1109/ICPR.1994.576366.
- Ojala T, Pietikinen M, Harwood D. A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 1996; 29(1): 51-59. DOI: 10.1016/0031-3203(95)00067-4.
- Pietikäinen M, Hadid A, Zhao G, Ahonen T. Computer vision using local binary patterns. London: Springer-Verlag; 2011. ISBN: 978-0-85729-747-1.
- Brahnam S, Lakhmi C, Nanni L, Lumini A, eds. Local binary patterns: New variants and applications. Berlin, Heidelberg: Springer-Verlag; 2014. ISBN: 978-3-642-39288-7.
- Ojala T, Pietikäinen M, Mäenpää T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 2002; 24(7): `971-987. DOI: 10.1109/TPAMI.2002.1017623.
- Kuznetsov A, Myasnikov V. A copy-move detection algorithm using binary gradient contours. In: Campilho A, Karray F, eds. Image Analysis and Recognition. Springer International Publishing Switzerland; 2016: 349-357. DOI: 10.1007/978-3-319-41501-7_40.
- Goncharov AV. Investigation of the properties of images sign representation in the pattern recognition problems [In Russian]. Izvestiya SFedU, Engineering Sciences 2009; Thematic issue: 178-188.
- Goncharov AV. Face recognition on the basis of sign-based image representation [In Russian]. Digital signal processing 2010; 1: 10-13.
- Karkishenko AN, Goncharov AV. Stability investigation of the sign representation of images. Autom Remote Control 2010; 71(9): 1793-1803. DOI: 10.1134/S0005117910090043.
- Karkishchenko AN, Goncharov AV. Geometry of sign representation of images and its application to noise resistance investigation [In Russian]. Intelligent Data Processing: Theory and Applications (IDP-2010): 335-339.
- Bronevich AG, Karkishchenko AN, Lepskiy AN. Uncertainty analysis of extracting features and representations from images [In Russian]. Moscow: "Fizmatlit" Publisher; 2013. ISBN: 978-5-9221-1499-8.
- Myasnikov VV. A local order transform of digital images. Computer Optics 2015; 39(3): 397-405. DOI: 10.18287/0134-2452-2015-39-3-397-405.
- Pyt'ev YuP, Chulichkov AI. Morphological methods for image analysis [In Russian]. Moscow: "Fizmatlit" Publisher; 2010. ISBN: 978-5-9221-1225-3.
- Vizilter YuV, Rubis AYu, Gorbatsevich VV. Form relational models of images and comparison metrics [In Russian]. Intelligent Data Processing: Theory and Applications 2012: 410-414.
- Leont'ev V. Stability of the travelling salesman problem. USSR Computational Mathematics and Mathematical Physics 1975; 15(5): 199-213. DOI: 10.1016/0041-5553(75)90116-0.
- Gordeev EN. Comparison of three approaches to studying stability of solutions to problems of discrete optimization and computational geometry. Journal of Applied and Industrial Mathematics 2015; 9(3): 358-366. DOI: 10.1134/S1990478915030072.
- Kuznetsov AV, Myasnikov VV. A fast plain copy-move detection algorithm based on structural pattern and 2D Rabin-Karp rolling hash. In: Campilho A, Kamel M, eds. Image Analysis and Recognition: 11th International Conference: ICIAR 2014: 461-468. DOI: 10.1007/978-3-319-11758-4_50.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20