Chernov V.M. "Exotic" binary  number systems for rings of Gauss and Eisenstein integers
   
  Samara  National Research University, 443086, Russia, Samara, Moskovskoye Shosse 34, 
   IPSI  RAS – Branch of the FSRC “Crystallography and Photonics” RAS,  Molodogvardeyskaya 151, 443001, Samara, Russia
 PDF
  PDF
Abstract:
The paper considers  nonstandard binary number systems for rings of Gauss and Eisenstein integers.  The principal difference ("exoticism") of such number systems from  the canonical number systems introduced by I. Katai for quadratic fields is  that as a binary "digital alphabet", it uses a two-element set that  does not contain a numeric zero. The paper also synthesizes algorithms for the  representation of numbers in the considered number system and characterizes the  possibility of an efficient implementation of arithmetic operations. 
Keywords:
number systems in  quadratic rings, rings of Gauss and Eisenstein integers, machine arithmetic.
Citation:
Chernov  VM. "Exotic"  binary number systems for rings of Gauss and Eisenstein integers. Computer  Optics 2018; 42(6): 1068-1073. DOI: 10.18287/2412-6179-2018-42-6-1068-1073.
References:
  - Bergman  G. A number system with  an irrational base. Math Magaz 1957; 31(2): 98-110.
- Stahov AP.  Golden ratio codes [In  Russian]. Moscow: “Radio & Sviaz” Publisher, 1984.
- Knuth DE. The art of  computer programming. Volume 2: Seminumerical algorithms. 3rd ed. Reading, MA:  Addison-Wesley; 1997. ISBN: 978-0-201-89684-8. 
- Fraenkel AS. Systems of numeration. Amer Math  Monthly 1985; 92(2): 105-114. DOI: 10.2307/2322638.
- Fraenkel AS. The use and usefulness of  numeration systems. Information and Computation 1989; 81(1): 46-61. DOI: 10.1016/0890-5401(89)90028-X.
- Joo I, Snitzer F. Expansion with respect to non-integer bases. Graz Math Bericht 1996;  329: 1-35.
- Pesavento L, Shapiro S, eds. Fibonacci  ratios with pattern recognition. Greenville:  Trader Press Inc; 1997. ISBN: 978-0-934380-36-2.
- Peters JMH. A ten point FFT  claculation which features the golden ratio. The Fibonacci Quarterly 1996;  34(4): 323-325.
- Agaian SS, Alaverdian SB. Fast orthogonal Fibonacci transforms. Proc Int  Coll on Coding Theory, Osaka, Japan, 1998: 335-352.
- Katai I, Szabo J.  Canonical number systems in imaginary quadratic fields. Acta Sci Math 1975; 37:  255-260. 
- Bogdanov PS, Chernov VM.  Classification of binary quasi-canonical number systems in imaginary quadratic  fields [In Russian]. Computer Optics 2013; 37(3):  391-400.
- Thuswardner J.  Elementary properties of canonical number systems in quadratic fields. In Book:  Bergum GE, Philippou AN, Horadam AF, eds. Applications of Fibonacci numbers.  405-414. Dordrecht:  Springer Science+Business Media; 1998: 405-414. DOI:  10.1007/978-94-011-5020-0_45.
- BorevichZI, Shafarevich IR. Number  theory.New   York, London:  Academic Press; 1966. 
- Chernov VM. Ternary number systems  in finite fields. Computer Optics 2018; 42(4): 704-711. DOI: 10.18287/2412-6179-2018-42-4-704-711. 
- Stahov  AP. Error-correcting codes (Fibonacci computer) [In Russian]. Moscow: “Znanie” Publisher, 1989. ISBN:  5-07-000867-6.
- Chernov VM. The implementation of number-theoretic transforms in  the code generated by the redundant number systems [In Russian]. Electronic  Simulation 1992; 15(4): 33-37.
- Chernov  VM, Sobolev DV. Fast algorithms of  discrete orthogonal transforms realized in the number system with an irrational  base. Optical Memory & Neural Networks 2000; 9(2): 91-100.
- Chernov VM, Pershina  MV. Fibonacci-Mersenne and Fibonacci-Fermat discrete transforms. Boletim  de Informatica, 1999; 9/10: 25-31.
- Chernov  VM. Fast algorithm for  «error-free» convolution computation using Mersenne-Lucas codes // Chaos, Solitons  and Fractals 2006; 29(2): 372-380. DOI: 10.1016/j.chaos.2005.08.081. 
- Chernov VM.  Quasi-parallel algorithm for error-free convolution computation using reduced  Mersenne–Lucas codes [In Russian]. Computer Optics 2015; 39(2): 241-248. DOI:  10.18287/0134-2452-2015-39-2-241-248.
-   Chernov V.M Arithmetic methods of fast algorithm of discrete  orthogonal transforms synthesis [In Russian]. Moscow: “Fizmathlit” Publisher; 2007. ISBN: 5-9221-0940-6.
  
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20