Issues of recognition system synthesis based on laser range profiles
Baulin F.B., Buryi E.V.

 

Bauman Moscow State Technical University (National Research University), Moscow, Russia

 PDF

Abstract:
In this article we described common problems encountered by various researchers when synthesizing recognition systems based on laser range profile, developed for non-cooperative vehicle recognition. Proven approaches to tackling the problems are also considered. The contemporary level of the technology and guidelines for developing the recognition systems are discussed. Based on the research results combined, it is concluded that such systems are not only feasible, but also in demand.

Keywords:
backscattering, range profile, laser, laser sensor, recognition, lidar.

Citation:
Baulin FB, Buryi EV. Issues of recognition system synthesis based on laser range profiles. Computer Optics 2019; 43(1): 5-13. DOI: 10.18287/2412-6179-2019-43-1-5-13.

References:

  1. Baum J, Tung E, Rak S. Non-cooperative identification of ships with electrooptical data. The Lincoln Laboratory Journal 1994; 1(7): 3-30.
  2. Buryi EV. Synthesis of an object recognition system based on the profile of the envelope of a laser pulse in pulsed lidars. Quantum Electronics 1998; 28(5): 458-462. DOI: 10.1070/QE1998v028n05ABEH001248.
  3. Hofton MA, Minster JB, Blair JB. Decomposition of laser altimeter waveforms. IEEE Transactions on Geoscience and Remote Sensing 2000; 38(4): 1989-1996. DOI: 10.1109/36.851780.
  4. Wasserman PhD. Neural computing: Theory and practice. New York: Coriolis Group; 1989. ISBN: 978-0-442-20743-4.
  5. van den Heuvel JC, Schoemaker RM, Schleijpen RHMA. Identification of air and sea-surface targets with a laser range profiler. Proc SPIE 2009; 7323: 73230Y. DOI: 10.1117/12.818426.
  6. Kunz GJ, Bekman HHPTh, Benoist KW, Cohen LH, van den Heuvel JC, van Putten FJM. Detection of small targets in a marine environment using laser radar. Proc SPIE 2005; 5885: 58850F. DOI: 10.1117/12.614914.
  7. TNO – innovation for life. Source: < https://www.tno.nl/en/ >.
  8. Steinvall O, Elmqvist M, Chevalier T, Brännlund C. Measurement and modeling of laser range profiling of small maritime targets. Proc SPIE 2012; 8542: 85420I. DOI: 10.1117/12.970271
  9. Swedish defence research agency – Totalförsvarets forskningsinstitut. Source: < https://www.foi.se/en/foi.html >.
  10. Marino RM, Davis WR. Jigsaw: a foliage-penetrating 3D imaging laser radar system. Lincoln Laboratory Journal 2005; 1(15): 23-36.
  11. MIT Lincoln Laboratory. Massachusetts Institute of Technology. Source: < https://www.ll.mit.edu/ >.
  12. Buryi E. Surface shape reconstruction of located small object. In: European Optical Society: EOS annual meeting 2012; TOM 7: TOM7_5832_001.
  13. Laser informational system laboratory. Source: < http://llis.bmstu.ru >.
  14. Schoemaker RM, Benoist KW. Characterisation of small targets in a maritime environment by means of laser range profiling. Proc SPIE 2011; 8037: 803705. DOI: 10.1117/12.884575.
  15. Steinvall O, Tulldahl M. Laser range profiling for small target recognition. Opt Eng 2017; 3(56): 031206. DOI: 10.1117/1.OE.56.3.031206.
  16. Zavada VS, Zakharov AV, Nepogodin IA. Matters concerning calculation of impulse response in optical band [In Russian]. Impul'snaya Fotometriya 1978; 5: 31-34.
  17. Buryi, EV, Smirnova YL. Forming of representative set of attribute vectors for training recognition system of aircrafts types by method for simulating of distributions of scattering coefficients of their surfaces [In Russian]. Matematicheskoye modelirovaniye 2004; 16(4): 80-88.
  18. Ishimaru A. Wave propagation and scattering in random media. Vol 2: Multiple scattering, turbulence, rough surfaces, and remote-sensing. San Diego: Academic Press; 1978. ISBN: 978-0-12-374702-0.
  19. Johnson J. Analysis of image forming systems. In Book: Image intensifier symposium: Part III. Fort Belvoir; 1958: 249-273.
  20. Babayants GI, Garanin SG, Zhupanov VG, Klyuev EV, Savkin AV, Sukharev SA, Sharov OA. Development and study of dielectric coatings with a high radiation resistance [In Russian]. Quantum Electronics 2005; 35(7): 663-666. DOI: 10.1070/QE2005v035n07ABEH008958.
  21. Ragheb H, Hancock ER. Testing new variants of the Beckmann–Kirchhoff model against radiance data. Computer Vision and Image Understanding 2006; 102(2): 145-168. DOI: 10.1016/j.cviu.2005.11.004.
  22. Rastrigin LA. Adaptation of complex system [In Russian]. Riga: Zhynatne; 1981.
  23. Vasile AN, Marino RM. Pose-independent automatic target detection and recognition using 3D laser radar imagery. Lincoln Laboratory Journal 2005; 15(1): 61-78.
  24. Armbruster W, Hammer M. Maritime target identification in flash-ladar imagery. Proc SPIE 2012; 8391: 83910C. DOI: 10.1117/12.920264.
  25. Baulin F, Buryi E, Semerenko D. Efficiency analysis of feature extraction methods for pulse laser ranging systems. Progress In Electromagnetics Research Symposium – Spring (PIERS) 2017: 3790-3794. DOI: 10.1109/PIERS.2017.8262418.
  26. Fukunaga K. Introduction to statistical pattern recognition, second edition. 2nd ed. Boston: Academic Press; 1990. ISBN: 978-0-12-269851-4.
  27. Hancock S, Anderson K, Disney M, Gaston KJ. Measurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: Calibration and validation with voxelised terrestrial lidar. Remote Sensing of Environment 2017; 188: 37-50. DOI: 10.1016/j.rse.2016.10.041.
  28. Haykin SO. Neural networks and learning machines. 3rd ed. New York: Pearson; 2008. ISBN: 978-0-13-147139-9.
  29. Quinlan JR. Induction of decision trees. Mach Learn 1986; 1(1): 81-106. DOI: 10.1007/BF00116251.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20