Investigation of non-markovian dynamics of two dipole-dipole interacting Qubits based on numerical solution of the non-linear stochastic schrödinger equation
Pavelev A.V., Semin V.V.

 

Samara National Research University, Moskovskoye shosse, 34, 443086, Samara, Russia

 PDF

Abstract:
In this paper, we investigate non-markovian dynamics of a system of two interacting qubits. With the help of stochastic calculus we derive the non-Markovian non-linear stochastic Schrödinger equation. This equation is solved by the direct computer simulation. The simulation is used to obtain some dynamic properties of the system.

Keywords:
open quantum system, non-linear stochastic Schrödinger equation, dipole-dipole interaction, qubit.

Citation:
Pavelev AV, Semin VV. Investigation of non-markovian dynamics of two dipole-dipole interacting qubits based on numerical solution of the non-linear stochastic Schrödinger equation. Computer Optics 2019; 43(2): 168-173. DOI: 10.18287/2412-6179-2019-43-2-168-173.

References:

  1. Nielsen MA, Chuang IL. Quantum Computation and Quantum Information. Cambrige: Cambridge University Press; 2000. ISBN: 978-0-521-63503-5.
  2. Imre S, Balazs F. Quantum computing for communications: an engineering approach. Budapest: John Wiley & Sons; 2005.
  3. Breuer HP, Francesco P. The theory of open quantum systems. Oxford: Oxford University Press; 2002.
  4. Liu BH, Li L, Huang Y, Li CF. Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nature Physics 2011; 7: 931-934.
  5. Parkdag SH, Chuang SL, Minch J, Ahn D. Intraband relaxation time effects on non-Markovian gain with many-body effects and comparison with experiment. Semiconductor Science and Technology 2000; 15(2): 203-208.
  6. Xu JS, Li CF, Zhang CJ, Xu XY, Zhang YS, Guo GC. Experimental investigation of the non-Markovian dynamics of classical and quantum correlations. Phys Rev A 2010; 82: 042328.
  7. Orieux A, D'Arrigo A, Ferranti G, Franco RL, Benenti G, Paladino E, Falci G, Sciarrino F, Mataloni P. Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics. Scientific Reports 2015; 5: 8575.
  8. Bernardes NK, Cuevas A, Orieux A, Monken CH, Mataloni P, Sciarrino F, Santos MF. Experimental observation of weak non-Markovianity. Scientific Reports 2015: 5: 17520.
  9. Xu J-S, Sun K, Li C-F, Xu X-Y, Guo G-C, Andersson E, Franco RL, Compagno G. Experimental recovery of quantum correlations in absence of system-environment back-action. Nature Communications 2013; 4: 2851.
  10. Rotter I, Bird JP.  A review of progress in the physics of open quantum systems: theory and experiment. Reports on Progress in Physics 2015; 7(11): 114001.
  11. De Vega I, Alonso D. Dynamics of non-Markovian open quantum systems. Reviews of Modern Physics 2017; 89; 015001.
  12. Barnett SM, Stenholm S. Hazards of reservoir memory. Phys Rev A 2001; 64: 033808.
  13. Campell S, Smirne A, Mazzola L, Gullo NL, Vacchini B, Busch T, Paternostro M. Critical assessment of two-qubit post-Markovian master equations. Phys. Rev. A 2012; 85: 032120.
  14. Barchielli A, Pellegrini C, Petruccione F. Stochastic Schrödinger equations with coloured noise. Europhysics Letters 2010; 91(2): 24001.
  15. Mikhailov AV, Troshkin NV, Trunin AM. The Fokker-Planck equation for relaxation of a system of two dipole-dipole interacting atoms. Proc SPIE 2015; 9917: 991732.
  16. Barchielli A, Gregoratti M. Quantum trajectories and measurements in continuous time: The diffusive case. Berlin, Heidelberg: Springer-Verlag; 2009. ISBN: 978-3-642-01297-6.
  17. Semin V, Pavelev A. Simulation of non-Markovian dynamics of dipole-dipole interacting atoms. J Phys: Conf Ser 2019; 1096: 012169. DOI: 10.1088/1742-6596/1096/1/012169.
  18. Øksendal B. Stochastic differential equations: An Introduction with applications. Berlin, Heidelberg: Springer-Verlag; 2000.
  19. Platen E, Bruti-Liberati N. Numerical solution of stochastic differential equations with jumps in finance. Berlin: Springer; 2010.
  20. Bargatin IV, Grishanin BA, Zadkov VN. Entagled quantum states of atomic systems. Physics-Uspekhi 2001; 44(6): 597-616. DOI: 10.1070/PU2001v044n06ABEH000940.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20