Comparison of backward flow values in the sharp focus of light fields with polarization and phase singularity
Kotlyar V.V., Nalimov A.G., Stafeev S.S.

 

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia;
Samara National Research University, Moskovskoye shosse, 34, 443086, Samara, Russia

 PDF

Abstract:
Using Jones matrices and vectors, we show that an optical metasurface composed of a set of subwavelength binary diffraction gratings and characterized by an anisotropic transmittance described by a polarization rotation matrix by the angle mφ, where φ is the polar angle, forms an m-th order azimuthally or radially polarized beam when illuminated by linearly polarized light, generating an optical vortex with the topological charge m upon illumination by circularly polarized light. Such a polarization-phase converter (PPC) performs a spin-orbit transformation, similar to that performed by liquid-crystal q-plates. Using a FDTD method, it is numerically shown that when illuminating the PPC by a uniformly (linearly or circularly) polarized field with topological charge m = 2 and then focusing the output beam with a binary zone plate, a reverse on-axis light flow is formed, being comparable in magnitude with the direct optical flow. Moreover, the reverse flows obtained when focusing the circularly polarized optical vortex with the topological charge m = 2 and the second-order polarization vortex are shown to be the same in magnitude.

Keywords:
optical vortex, polarization, backward flux, metalens.

Citation:
Kotlyar VV, Nalimov AG, Stafeev SS. Comparison of backward flow values in the sharp focus of light fields with polarization and phase singularity. Computer Optics 2019; 43(2): 174-183. DOI: 10.18287/2412-6179-2019-43-2-174-183.

References:

  1. Nye JF, Berry MV. Dislocations in wave trains. Proc Roy Soc Lond A, 1974; 336: 165-190.
  2. Soskin MS, Vasnetsov MV. Singular optics. In Book: Wolf E, ed. Progress in optics. Ch 4. Elsevier; 2001: 219-276.
  3. Swartzlander GA, Jr. The optical vortex coronagraph. J Opt A 2009; 11: 094022.
  4. Gahagan KT, Swartzlander GA. Optical vortex trapping of particles. Opt Lett 1996; 21: 827-829.
  5. Gecevičius M, Drevinskas R, Beresna M, Kazansky PG. Single beam optical vortex tweezers with tunable orbital angular momentum. Appl Phys Lett 2014; 104: 231110.
  6. Simpson NB, Dholakia K, Allen L, Padgett MJ. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt Lett 1997; 22: 52-54.
  7. Volke-Sepulveda K, Garcés-Chávez V, Chávez-Cerda S, Arlt J, Dholakia K. Orbital angular momentum of a high-order Bessel light beam. J Opt B 2002; 4: S82-S89.
  8. Thidé B, Then H, Sjöholm J, Palmer K, Bergman J, Carozzi TD, Istomin YN, Ibragimov NH, Khamitova R. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys Rev Lett 2007; 99: 087701.
  9. Bandyopadhyay A, Singh RP. Wigner distribution of elliptical quantum optical vortex. Opt Commun 2011; 284: 256-261.
  10. Bandyopadhyay A, Prabhakar S, Singh RP. Entanglement of a quantum optical elliptic vortex. Phys Lett A 2011; 375: 1926-1929.
  11. McMorran BJ, Agrawal A, Anderson IM, Herzing AA, Lezec HJ, McClelland JJ, Unguris J. Electron vortex beams with high quanta of orbital angular momentum. Science 2011; 331: 192-195.
  12. Stafeev SS, Nalimov AG. Longitudinal component of the Poynting vector of a tightly focused optical vortex with circular polarization. Computer Optics 2018; 42(2): 190-196. DOI: 10.18287/2412-6179-2018-42-2-190-196.
  13. Sukhov S, Dogariu A. On the concept of “tractor beams”. Opt Lett 2010; 35: 3847-3849.
  14. Kotlyar VV, Nalimov AG. A vector optical vortex generated and focused using a metalens. Computer Optics 2017; 41(5): 645-654. DOI: 10.18287/2412-6179-2017-41-5-645-654.
  15. Mitri FG. Reverse propagation and negative angular momentum density flux of an optical nondiffracting nonparaxial fractional Bessel vortex beam of progressive waves. J Opt Soc Am A 2016; 33: 1661-1667.
  16. Salem MA, Bagci H. Energy flow characteristics of vector X-wave. Opt Express 2011; 19: 8526-8532.
  17. Vaveliuk P, Martinez-Matos O. Negative propagation effect in nonparaxial Airy beams. Opt Express 2012; 20: 26913-26921.
  18. Berry MV. Quantum backflow, negative kinetic energy, and optical retro-propagation. J Phys A: Mathem & Theor 2010; 43: 415302.
  19. Irvine WNM, Boumeester D. Linked and knotted beams of light. Nat Phys 2008; 4: 716-720.
  20. Sugic D, Dennis MR. Singular knot bundle in light. J Opt Soc Am A 2018; 35(12): 1987-1999.
  21. Yu N, Genevet P, Kats MA, Avieta F, Terienne JP, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized lows of reflection and refraction. Science 2011; 334(6054): 333-337.
  22. Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnology, 2015; 10(11): 937-43.
  23. Kotlyar VV, Nalimov AG, Stafeev SS, Hu G, O’Faolain L, Koltyar MV, Gibson D, Song S. Thing high numerical aperture metalens. Opt Express 2017; 25(7): 8158-8167. DOI: 10.1364/OE.25.008158.
  24. Tian S, Guo H, Hu J, Zhuang S. Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency. Opt Express 2019; 27(2): 680-688.
  25. Park CS, Koirala I, Gao S, Shrestha VR, Lee SS, Choi DY. Structural color filter based on an all-dielectric metasurface exploiring silicon-rich silicon nitride nanodisks. Opt Express 2019; 27(2): 667-678.
  26. Kotlyar VV, Zalyalov OK. Design of diffractive optical elements modulating polarization. Optik 1996; 103(3): 125-130.
  27. Bomzon Z, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Opt Lett 2002; 27(13): 1141-1143.
  28. Niv A, Biener G, Kleiner V, Hasman E. Propgation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam-Berry phase optical elements. Opt Lett 2004; 29(3): 238-240.
  29. Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 2006; 96: 163905.
  30. Kotlyar VV, Khonina SN, Uspleniev GV, Shinkarev MV, Soifer VA. The phase rotor filter. J Mod Opt 1992; 39(5): 1147-1154. DOI: 10.1080/09500349214551151.
  31. Kotlyar VV, Nalimov AG. Sharp focusing of vector optical vortices using a metalens. J Opt 2018; 20(7): 075101. DOI: 10.1088/2040-8986/aac4b3.
  32. Kotlyar VV, Kovalev AA, Nalimov AG. Energy density and energy flux in the focus of an optical vortex: reverse flux of light energy. Opt Lett 2018; 43(12): 2921-2924. DOI: 10.1364/OL.43.002921.
  33. Stafeev SS, Nalimov AG, Kotlyar VV. Energy backflow in a focal spot of the cylindrical vector beam. Computer Optics 2018; 42(5): 744-750. DOI: 10.18287/2412-6179-2018-42-5-744-750.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20