Sharp focusing of a light field with polarization and  phase singularities of an arbitrary order
    Kotlyar V.V., Stafeev S.S., Kovalev A.A.
   
  IPSI RAS – Branch of the  FSRC “Crystallography and Photonics” RAS, 
Molodogvardeyskaya 151, 443001, Samara, Russia;
 Samara National Research University, Moskovskoye shosse, 34,  443086, Samara, Russia
 PDF
  PDF
Abstract:
Using the Richards-Wolf  formalism, we obtain general expressions for all components of the electric and  magnetic strength vectors near the sharp focus of an optical vortex with the  topological charge m and nth-order azimuthal polarization. From  these equations, simple consequences are derived for different values of m and n. If m=n>1, there is a non-zero intensity on  the optical axis, like the one observed when focusing a vortex-free circularly  polarized light field. If n=m+2, there is a reverse flux of light  energy near the optical axis in the focal plane. The derived expressions can be  used both for simulating the sharp focusing of optical fields with the double  singularity (phase and polarization) and for a theoretical analysis of focal  distributions of the intensity and the Poynting vector, allowing one to reveal  the presence of rotational symmetry or the on-axis reverse energy flux, as well  as the focal spot shape (a circle or a doughnut).
Keywords:
sharp focusing,  Richards-Wolf formulae, optical vortex, topological charge, phase singularity,  polarization singularity, Poynting vector, reverse flux of energy, focal spot  symmetry
Citation:
Kotlyar VV, Stafeev SS, Kovalev AA. Sharp focusing of a light field with polarization and phase  singularities of an arbitrary order. Computer Optics 2019; 43(3): 337-346. DOI:  10.18287/2412-6179-2019-43-3-337-346.
References:
  - Richards  B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic  system. Proceedings of the Royal Society A: Mathematical, Physical and Engineering  Sciences 1959; 253(1274): 358-379. DOI: 10.1098/rspa.1959.0200.
- Youngworth KS, Brown TG. Focusing  of high numerical aperture cylindrical-vector beams. Opt Express 2000; 7(2): 77-87. DOI: 10.1364/OE.7.000077.
- Zhan Q, Leger JR. Focus shaping using cylindrical  vector beams. Opt Express 2002; 10(7): 324-331. DOI: 10.1364/OE.10.000324. 
 
- Zhan Q. Cylindrical vector beams: from mathematical concepts to  applications. Adv Opt Photon 2009; 1(1): 1-57. DOI: 10.1364/AOP.1.000001. 
 
- Chen B,  Pu J. Tight focusing of  elliptically polarized vortex beams. Appl Opt 2009; 48(7): 1288-1294. DOI:  10.1364/AO.48.001288.
 
- Rashid M, Marago OM, Jones PH. Focusing of high order  cylindrical vector beams. J Opt  A: Pure Appl Opt 2009; 11(6): 065204. DOI: 10.1088/1464-4258/11/6/065204. 
 
- Milione G, Sztul HI, Nolan DA, Alfano RR. Higher-order Poincaré  sphere, Stokes parameters, and  angular momentum of light. Phys Rev Lett 2011; 107(5): 053601. DOI:  10.1103/PhysRevLett.107.053601. 
 
- Holleczek A, Aiello A, Gabriel C, Marquardt C,  Leuchs G. Classical and  quantum properties of cylindrically polarized  states of light. Opt Express 2011; 19(10): 9714-9736. DOI:  10.1364/OE.19.009714. 
 
- Chen S, Zhou X, Liu Y, Ling X, Luo H, Wen S. Generation of arbitrary  cylindrical vector beams on the higher order Poincaré sphere. Opt Lett 2014;  39(18): 5274-5276. DOI: 10.1364/OL.39.005274. 
 
- Wang T,  Kuang C, Hao X, Liu X.  Focusing properties of cylindrical vector vortex beams with high numerical aperture objective.  Optik 2013; 124(21): 4762-4765. DOI: 10.1016/j.ijleo.2013.01.070.
 
- Gong L, Ren Y, Liu W, Wang M, Zhong M, Wang Z. Generation of cylindrical  polarized vector vortex beams  with digital micromirror device. J Appl Phys 2014; 116: 183105. DOI:  10.1063/1.4901574. 
 
- Zhang X,  Chen R, Wang A. Focusing  properties of cylindrical vector vortex beams. Opt Commun 2018; 414: 10-15. DOI: 10.1016/j.optcom.2017.12.076.
 
- Han Y,  Chen L, Liu YG, Wang Z, Zhang H, Yang K, Chou KC. Orbital angular momentum  transition of light using a  cylindrical vector beam. Opt Lett 2018; 43(9): 2146-2149. DOI: 10.1364/OL.43.002146.
 
- Li Y,  Zhu Z, Wang X, Gong L, Wang M, Nie S. Propagation evolution of an off-axis high-order cylindrical vector beam. J Opt  Soc Am A 2014; 31(11): 2356-2361. DOI: 10.1364/JOSAA.31.002356.
 
- Matsusaka  S, Kozawa Y, Sato S. Micro-hole  drilling by tightly focused vector beams. Opt Lett 2018; 43(7): 1542-1545. DOI:  10.1364/OL.43.001542.
 
- Kotlyar VV, Kovalev AA,  Nalimov AG. Energy density and energy flux  in the focus of an optical vortex: reverse flux of  light energy. Opt Lett 2018; 43(12): 2921-2924. DOI: 10.1364/OL.43.002921. 
 
- Kotlyar  VV, Nalimov AG, Kovalev  AA. Helical reverse flux of light of a focused optical vortex. J Opt 2018; 20(9): 095603. DOI:  10.1088/2040-8986/aad606. 
 
- Stafeev SS,  Nalimov AG, Kotlyar VV. Energy backflow in a focal spot of the cylindrical  vector beam. Computer Optics 2018; 42(5): 744-750. DOI:  10.18287/2412-6179-2018-42-5-744-750. 
 
- Pal SK, Ruchi,  Senthilkumaran P. C-point and V-point singularity lattice formation and index  sign conversion methods. Opt Commun 2017; 393: 156-168. DOI: 10.1016/j.optcom.2017.02.048. 
 
- Ruchi, Pal  S, Senthilkumaran P. Generation of V-point polarization singularity lattices.  Opt Express 2017; 25: 19326-19331. DOI: 10.1364/OE.25.019326.
 
- Stafeev  SS, Kotlyar VV. Tight focusing of a quasi-cylindrical optical vortex. Opt  Commun 2017; 403: 277-282. DOI: 10.1016/j.optcom.2017.07.054. 
  
  © 2009, IPSI RAS
  151,  Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7  (846)  242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing   editor), Fax: +7 (846) 332-56-20