Detection of disturbed forest ecosystems in the forest-steppe zone using reflectance values
Terekhin E.A.
Belgorod State University, Belgorod, Russia
PDF
Abstract:
This paper presents results of the assessment of discriminant analysis potentialities for detecting disturbed forest ecosystems in the forest-steppe zone using their reflectance spectrum properties. A new method is proposed for the automated detection of disturbed forest stands among forest-covered lands, based on the discriminant analysis of the magnitude of changes in the reflectance in various spectral ranges. Using experimental data from 1836 forest areas typical of the forest-steppe zone of the Central Chernozem region, we propose equations that allow a specific forest area to be classified as disturbed or undisturbed forests in an automated mode. The accuracy of disturbed forest detection is about 90%. It is found that variations in the short-wave infrared reflectance are most informative for disturbed forest land detection when compared with the reflectance variations detected by the Landsat sensors in the other spectral ranges.
Keywords:
disturbed forest ecosystems, stepwise discriminant analysis, remote sensing, Landsat, reflectance spectrum properties
Citation:
Terekhin EA. Detection of disturbed forest ecosystems in the forest-steppe zone using reflectance values. Computer Optics 2019; 43(3): 412-418. DOI: 10.18287/0134-2452-2019-43-3-412-418.
References:
- Bartalev SA, Kuryatnikova TS, Stibig H. Methods for the analysis of time-series of high-resolution satellite images for the assessment of logging in the taiga [In Russian] Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa 2005; 2(2): 217-227.
- Viola P, Jones MJ. Rapid object detection using a boosted cascade of simple features. Proc IEEE Conf on Comp Vision and Pattern Recogn (CVPR 2001) 2001.Kennedy R, Yang Z, Cohen W. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr – Temporal segmentation algorithms. Remote Sensing of Environment 2010; 114(12): 2897-2910. DOI: 10.1016/j.rse.2010.07.008.
- Hermosilla T, Wulder MA White JC, Coops NC, Hobart GW. Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sensing of Environment 2015; 170: 121-132. DOI: 10.1016/j.rse.2015.09.004.
- ElsakovVV, Marushak IО. Spectrazonal satelite images in estimation of climatic trends of forest vegetation on west slopes of Subpolar polar Ural [In Russian] Computer Optics. 2011; 35(2): 281-286.
- Zhirin VM, Knyazeva SP, Eydlina SV. Dynamics of spectral brightness for species/age structure of groups of the forest types on Landsat satellite images [In Russian] Lesovedeniye. 2014; 5: 3-12.
- Senf C, Pflugmacher D, Hostert P, Seidl R. Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe. ISPRS Journal of Photogrammetry and Remote Sensing 2017; 130: 453-463. DOI: 10.1016/j.isprsjprs.2017.07.004.
- Terekhin EA. Estimation of forest ecosystems disturbance in the southwest of Central Russian Upland using remote sensing data. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 2017; 14(4): 112-124. DOI: 10.21046/2070-7401-2017-14-4-112-124.
- Isaev AS, Korovin GN. Large-Scale Changes in Eurasian Boreal Forests and Methods of Their Assessment Using Space Information [In Russian]. Lesovedeniye. 2003; 2: 3-9.
- Hussain M, Chen D, Cheng A, Wei H, Stanley D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing 2013; 80: 91-106. DOI: 10.1016/j.isprsjprs.2013.03.006.
- Zhu Z. Change detection using Landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS Journal of Photogrammetry and Remote Sensing 2017; 130: 370-384. DOI: 10.1016/j.isprsjprs.2017.06.013.
- Terekhin EA. GIS-modeling of forest ecosystems disturbance using multiyear remote sensing data [In Russian]. Geoinformatika 2017; 3: 56-62.
- Cohen WB, Healey SP, Yang Z, Stehman SV, Brewer CK, Brooks EB, Gorelick N, Huang C, Hughes MJ, Kennedy RE, Loveland TR, Moisen GG, Schroeder TA, Vogelmann JE, Woodcock CE, Yang L, Zhu Z. How similar are forest disturbance maps derived from different Landsat time series algorithms? Forests 2017; 8(4): 98. DOI: 10.3390/f8040098.
- Hislop S, Jones S, Soto-Berelov M, Skidmore A, Haywood A, Nguyen TH. A fusion approach to forest disturbance mapping using time series ensemble techniques. Remote Sensing of Environment 2019; 221: 188-197. DOI: 10.1016/j.rse.2018.11.025.
- Haywood A, Verbesselt J, Baker PJ. Mapping disturbance dynamics in wet sclerophyll forests using time series Landsat. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 2016; 41: 633-641.
- Wulder MA, White JC, Loveland TR, Woodcock CE, Belward AS, Cohen WB, Fosnight EA, Shaw J, Masek JG, Roy DP. The global Landsat archive: Status, consolidation, and direction. Remote Sensing of Environment 2016; 185: 271-283. DOI: 10.1016/j.rse.2015.11.032.
- Li P, Jiang L, Feng Z. Cross-comparison of vegetation indices derived from Landsat-7 enhanced thematic mapper plus (ETM+) and Landsat-8 operational land imager (OLI) sensors. Remote Sensing 2014; 6(1): 310-329. DOI: 10.3390/rs6010310.
- Khalafyan AA. STATISTICA 6. Statistical analysis [In Russian]. Moscow: "Binom-Press" Publisher; 2007.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20