Comparison of binary feature points descriptors of images under  distortion conditions
  Krasnabayeu E.A., Chistabayeu  D.V., Malyshev A.L.
   
  Vitebsk State University  named after P.M. Masherov, Vitebsk, Belarus;
  Design Bureau “Display”,  Vitebsk, Belarus
 PDF
  PDF
Abstract:
The article is devoted  to the review and analysis of binary descriptors of feature points of objects  in digital images under distortion conditions. An overview of the BRIEF, ORB,  BRISK, FREAK, AKAZE, LATCH methods is given. The evaluation of properties of  the descriptors on sample images is performed. The paper addresses problems of  using these methods for real time image processing.
Keywords:
digital image  processing, pattern recognition, image analysis, feature detection, feature  description, feature matching
Citation:
Krasnabayeu YA, Chistabayeu DV, Malyshev AL. Comparison of binary feature points descriptors of images under  distortion conditions. Computer Optics 2019; 43(3): 434-445. DOI: 10.18287/2412-6179-2019-43-3-434-445.
References:
  - Harris C, Stephens M. A  combined corner and edge detector. 4th Alvey Vision Conference 1988; 15(50):  147-151. DOI: 10.5244/c.2.23.
- Shi J, Tomasi C. Good  features to track. IEEE Conference on Computer Vision and Pattern Recognition  1994; 593-600. DOI: 10.1109/CVPR.1994.323794.
- Smith  S, Brady J. SUSAN – a new approach to low level image processing. International  Journal of Computer Vision 1997; 23(1): 45-78. DOI: 10.1023/A:1007963824710.
 
- Lindeberg  T. Feature detection with automatic scale selection. International Journal of  Computer Vision 1998; 30(2): 77-116. DOI: 10.1023/A:1008045108935.
 
- Haralick  R. Ridges and valleys on digital images. Computer Vision, Graphics, and Image  Processing 1983; 22(1): 28–38. DOI: 10.1016/0734-189X(83)90094-4.
 
- Myasnikov  VV. Model-based gradient field descriptor as a convenient tool for image  recognition and analysis [In Russian]. Computer Optics 2012; 36(4): 596-604.
 
- Myasnikov  VV. Description of images using model-oriented descriptors. Computer Optics  2017; 41(6): 888-896. DOI: 10.18287/2412-6179-2017-41-6-888-896.
 
- Makarov  AO, Starovoitov VV. Fast algorithms for calculating traits on digital images  [In Russian]. Minsk:  "UIPI" Publisher; 2005. 
 
- Lowe  DG. Object recognition from local scale-invariant features. Proceedings of the  International Conference on Computer Vision 1999; 2: 1150-1157. DOI:  10.1109/ICCV.1999.790410.
 
- Herbert  B, Ess A, Tuytelaars T, Van Gool L. SURF: speeded up robust features. Computer  Vision and Image Understanding (CVIU) 2008; 110: 346-359. DOI:  10.1007/11744023_32.
 
- Freeman  W, Roth M. Orientation histograms for hand gesture recognition. International  Workshop on Automatic Face and Gesture Recognition 1994; 296-301.
 
- Rosten  E, Drummond T. Machine learning for high speed corner detection. 9th  European Conference on Computer Vision 2006; 1: 430-443. DOI:  10.1007/11744023_34.
 
- Matas  J, Chum O, Urban M, Pajdla T. Robust wide baseline stereo from maximally stable  extremal regions. British Machine Vision Conference 2002; 22(10): 384-396. DOI:  10.1016/j.imavis.2004.02.006.
 
- Heinly  J, Dunn E, Frahm JM. Comparative  Evaluation of Binary Features. Computer Vision (ECCV 2012) 2012; 7573: 759-773.  DOI: 10.1007/978-3-642-33709-3_54.
 
- Bekele  D, Teutsch M, Schuchert T. Evaluation of binary keypoint descriptors. IEEE ICIP  2013: 3652-3656. DOI: 10.1109/ICIP.2013.6738753.
 
- Miksik  O, Mikolajczyk K. Evaluation of local detectors and descriptors for fast  feature matching. Proceedings of the 21st International Conference on Pattern  Recognition (ICPR2012) 2012; 2681-2684.
 
- Canclini  A, Cesana M, Redondi A, Tagliasacchi M, Ascenso J, Cilla R. Evaluation of  low-complexity visual feature detectors and descriptors. 18th  International Conference on Digital Signal Processing (DSP) 2013: 1-7.  DOI: 10.1109/ICDSP.2013.6622757.
 
- Figat  J, Kornuta T, Kasprzak W. Performance evaluation of binary descriptors of local  features. ICCVG 2014: Computer Vision and Graphics 2014; 8671: 187-194. DOI:  10.1007/978-3-319-11331-9_23.
 
- Calonder  M, Lepetit V, Strecha C, Fua P. BRIEF: binary robust independent elementary  features. European Conference on Computer Vision 2010; 6314: 778-792. DOI:  10.1007/978-3-642-15561-1_56.
 
- Rublee  E, Rabaud V, Konolige K, Bradski G. ORB: an efficient alternative to SIFT or  SURF. IEEE International Conference on Computer Vision 2011; 58(11): 2564-2571.  DOI: 10.1109/ICCV.2011.6126544.
 
- Leutenegger  S, Chli M, Siegwart RY. BRISK:  Binary Robust invariant scalable keypoints. Computer Vision (ICCV) IEEE International  Conference 2011: 2548-2555. DOI: 10.1109/ICCV.2011.6126542.
 
- Alahi  A, Ortiz R, Vandergheynst P. Freak: Fast retina keypoint. Computer Vision and  Pattern Recognition (CVPR) 2012: 510-517. DOI: 10.1109/CVPR.2012.6247715.
 
- Alcantarilla  P, Bartoli A, Davison A. KAZE Features. European Conference on Computer Vision  2012; 4: 214-227. DOI: 10.1007/978-3-642-33783-3_16.
 
- Alcantarilla P,  Nuevo J, Bartoli A. Fast explicit diffusion for accelerated features in  nonlinear scale spaces. British Machine Vision Conference 2013; 13.1–13.11. DOI:  10.5244/C.27.13.
 
- Demchev  DM, Volkov VA, Khmeleva VS, Kazakov EE. Sea ice drift  retrieval from sar using feature tracking [In  Russian]. Problems of the Arctic  and Antarctic 2016; 3(109): 5-19. 
 
- Levi  G, Hassner T. LATCH: Learned arrangements of three patch codes. Winter  Conference on Applications of Computer Vision (WACV) 2016: 1-9. DOI: 10.1109/WACV.2016.7477723.
 
- Brown  M, Hua G, Winder S. Discriminative learning of local image descriptors. IEEE  Transactions on Pattern Analysis and Machine Intelligence 2011; 33(1): 43-57.  DOI: 10.1109/TPAMI.2010.54
 
- Mikolajczyk  K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Van  Gool L. A comparison of affine region detectors. International Journal  of Computer Vision 2005; 65: 43-72. DOI: 10.1007/s11263-005-3848-x. 
 
- Mikolajczyk  K, Schmid C. A Performance Evaluation of Local Descriptors. IEEE Transactions  on Pattern Analysis and Machine Intelligence 2005; 27(10): 1615-1630. DOI:  10.1109/TPAMI.2005.188.
 
- Tuytelaars,  T, Mikolajczyk R. Local invariant feature detectors: A survey. Foundations and  Trends in Computer Graphics and Vision 2008; 3(3): 177-280. DOI:  10.1561/0600000017.
 
- Verichev  AV. Traceable detector of feature points of the image [In Russian]. Collected works of III international  conference and youth school "Information technologies and nanotechnology"  2017; 670-675.
 
- Kaehler  A, Bradski G. Learning OpenCV 3: Computer vision in C++ with the OpenCV  Library. Sebastopol, CA: O’Reilly Media; 2016. 
  
  © 2009, IPSI RAS
  151,  Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7  (846)  242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing   editor), Fax: +7 (846) 332-56-20