(43-5) 02 * << * >> * Russian * English * Content * All Issues
  
Formation of the reverse flow of energy in a sharp  focus
V.V. Kotlyar1,2, S.S. Stafeev1,2, A.G. Nalimov1,2, A.A. Kovalev1,2
  1 IPSI RAS – Branch of the  FSRC “Crystallography and Photonics” RAS,  
    Molodogvardeyskaya 151,  443001, Samara, Russia,
2 Samara National Research  University, 
Moskovskoye Shosse 34,  443086, Samara, Russia
  PDF, 1299 kB
DOI: 10.18287/2412-6179-2019-43-5-714-722
Pages: 714-722.
Full text of article: Russian language.
 
Abstract:
It was theoretically  shown that in the interference pattern of four plane waves with specially  selected directions of linear polarization it is formed a reverse flow of  energy. The areas of direct and reverse flow alternate in a staggered order in  the cross section of the interference pattern. The absolute value of the  reverse flow directly depends on the angle of convergence of the plane waves  (on the angle between the wave vector and the optical axis) and reach the  maximum at an angle of convergence close to 90 degrees. The right-handed  triples of the vectors of four plane waves (the wave vector with positive  values of projection to optical axis and the vector of electric and magnetic  fields) when added in certain areas of the interference pattern form an  electromagnetic field described by the left-handed triple of vectors; however,  the projection of wave vector to optical axis has negative values. In these  areas, the light propagates in the opposite direction. A similar explanation of  the mechanism of the formation of a reverse flow can be applied to the case of  a sharp focusing of a laser beam with a second-order polarization singularity.  It is also shown that if a spherical dielectric Rayleigh nanoparticle is placed  in the backflow region, then a force directed in the opposite direction will  act on it (the scattering force will be more than the gradient force).
Keywords:
energy reverse flow,  interference of plane waves, Richards-Wolf formulae, tight focusing,  cylindrical vector beam.
Citation:
  Kotlyar VV, Stafeev SS, Nalimov AG, Kovalev AA. Formation of the reverse flow of energy in a sharp focus. Computer  Optics 2019; 43(5): 714-722. DOI: 10.18287/2412-6179-2019-43-5-714-722.
Acknowledgements:
This work was supported  by the Russian Science Foundation (Project No. 17-19-01186) in part of «Force  acting on a nanoparticle in reverseflow», by the Russian Foundation of Basic  Research (Project No. 18-29-20003) in part of «Formation of the energy backflow  on the optical axis of the focal spot of polarization vortex», and by the  Ministry of Science and Higher Education within the State assignment FSRC  «Crystallography and Photonics» RAS under Agreement 007-ГЗ/Ч3363/26 in part of  «The interference of four plane waves with linear polarization».
References:
  - Nye JF, Berry MV. Dislocations in wave trains. Proc  R Soc A: Math Phys Eng Sci 1974; 336(1605): 165-190.
 
  - Soskin M, Vasnetsov M. Singular  optics. In Book: Wolf E, ed. Progress in Optics. Elsevier; 2001: 219-276.
 
  - Swartzlander Jr GA. The optical  vortex coronagraph. J Opt A: Pure Appl Opt 2009; 11(9): 094022.
 
  - Gahagan KT, Swartzlander GA. Optical  vortex trapping of particles. Opt Lett 1996; 21(11): 827-829.
 
  - Gecevičius M, Drevinskas R, Beresna  M, Kazansky PG. Single beam optical vortex tweezers with tunable orbital angular  momentum. Appl Phys Lett 2014; 104(23): 231110.
 
  - Simpson NB, Dholakia K, Allen L, Padgett MJ.  Mechanical equivalence of spin and orbital angular momentum of light: an  optical spanner. Opt Lett 1997; 22(1): 52-54.
 
  - Volke-Sepulveda K, Garcés-Chávez V,  Chávez-Cerda S, Arlt J, Dholakia K. Orbital angular momentum of a high-order  Bessel light beam. J Opt B: Quantum Semiclassical Opt 2002; 4(2): S82-S89.
 
  - Thidé B, Then H, Sjöholm J, Palmer  K, Bergman J, Carozzi TD, Istomin YN, Ibragimov NH, Khamitova R. Utilization of  photon orbital angular momentum in the low-frequency radio domain. Phys Rev  Lett 2007; 99(8): 087701.
 
  - Bandyopadhyay A, Singh RP. Wigner  distribution of elliptical quantum optical vortex. Opt Commun 2011; 284(1):  256-261. 
 
  - Bandyopadhyay A, Prabhakar S, Singh  RP. Entanglement of a quantum optical elliptic vortex. Phys Lett A 2011;  375(19): 1926-1929.
 
  - McMorran BJ, Agrawal A, Anderson IM,  Herzing AA, Lezec HJ, McClelland JJ, Unguris J. Electron vortex beams with high  quanta of orbital angular momentum. Science 2011; 331(6014): 192-195.
 
  - Kotlyar V, Kovalev A, Nalimov A.  Energy density and energy flux in the focus of an optical vortex: reverse flux  of light energy. Opt Lett 2018; 43(12): 2921-2924. DOI:  10.1364/OL.43.002921. 
 
  - Kotlyar VV, Nalimov AG, Kovalev AA.  Helical reverse flux of  light of a focused optical vortex. J Opt 2018;  20(9): 095603. DOI:  10.1088/2040-8986/aad606. 
 
  - Kotlyar VV, Nalimov AG, Stafeev SS.  Energy backflow in the focus of an optical vortex. Laser Phys 2018; 28(12):  126203. DOI: 10.1088/1555-6611/aae02f.
 
  - Kotlyar VV, Nalimov AG. Sharp  focusing of vector optical vortices using a metalens. J Opt 2018; 20(7):  075101. DOI: 10.1088/2040-8986/aac4b3. 
 
  - Richards B, Wolf E. Electromagnetic  diffraction in optical systems. II. Structure of the image field in an  aplanatic system. Proc R Soc A 1959; 253(1274): 358-379.
 
  - Katsenelenbaum BZ. What is the  direction of the Poynting vector? J Commun Technol Electron 1997; 42(2):  119-120.
 
  - Karman GP, Beijersbergen MW, van  Duijl A, Woerdman JP. Creation and annigilation of phase singularities in a  focal field. Opt Lett 1997; 22(9): 1503-1505.
 
  - Berry MV. Wave dislocation reactions  in non-paraxial Gaussian beams. J Mod Opt 1998; 45(9): 1845-1858.
 
  - Volyar AV. Nonparaxial Gausian  beams: I. Vector fields. Techn Phys Lett 2000; 26(7): 573-575.
 
  - Volyar AV, Shvedov VG, Fadeeva TA.  The structure of a nonparaxial Gaussian beam near the focus: II. Optical  vortices. Opt Spectr 2001; 90(1): 93-100.
 
  - Vasnetsov MV, Gorshkov VN, Marienko  IG, Soskin MS. Wave front motion in the vicinity of a phase dislocation: optical  vortex. Opt Spectr 2000; 88(2): 260-265.
 
  - Novitsky AV, Novitsky DV. Negative  propagation of vector Bessel beams. J Opt Soc Am A 2007; 24(9): 2844-2849.
 
  - Sukhov S, Dogariu A. On the concept  of “tractor beams”. Opt Lett 2010; 35(22): 3847-3849.
 
  - Qiu CW, Palima D., Novitsky A, Gao  D, Ding W, Zhukovsky SV, Gluckstad J. Engineering light-mater interaction for  emerging optical manipulation applications Nanophotonics 2014; 3(3): 181-201.
 
  - Mitri FG. Reverse propagation and  negative angular momentum density flux of an optical non-diffracting nonparaxial  fractional Bessel vortex beam of progressive waves. J Opt Soc Am A 2016; 33(9):  1661-1667.
 
  - Salem MA, Bağcı H. Energy flow  characteristics of vector X-Waves. Opt Express 2011; 19(9): 8526-8532.
 
  - Vaveliuk P, Martinez-Matos O.  Negative propagation effect in nonparaxial Airy beams. Opt Express 2012;  20(24): 26913-26921.
 
  - Rondón-Ojeda I, Soto-Eguibar F.  Properties of the Poynting vector for invariant beams: negative propagation in  Weber beams. Wave Motion 2018; 78: 176-184.
 
  - Berry MV. Quantum backflow, negative  kinetic energy, and optical retro-propagation. J Phys A: Math Theor 2010;  43(41): 415302.
 
  - Irvine WTM, Bouwmeester D. Linked  and knotted beams of light. Nat Phys 2008; 4(9): 716-720.
 
  - Sugic D, Dennis MR. Singular knot  bundle in light. J Opt Soc Am A 2018; 35(12): 1987-1999.
 
  - Larocque H, Sugic D, Mortimer D,  Taylor AJ, Fickler R, Boyd RW, Dennis MR, Karimi E. Reconstructing the topology  of optical polarization knots. Nat Phys 2018; 14(11): 1079-1082.
 
  - Harada Y, Asakura T. Radiation forces on a  dielectric sphere in the Rayleigh scattering regime. Opt Commun 1996; 124(5-6):  529-541.
  
  
 
  
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7  (846)  242-41-24 (ответственный
      секретарь), +7 (846)
      332-56-22 (технический  редактор), факс: +7 (846) 332-56-20