(43-6) 01 * << * >> * Russian * English * Content * All Issues

Topological stability of optical vortices diffracted by a random phase screen

V.V. Kotlyar1,2, A.A. Kovalev1,2, A.P. Porfirev1,2

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University,
443086, Russia, Samara, Moskovskoye Shosse 34

 PDF, 1100 kB

DOI: 10.18287/2412-6179-2019-43-6-917-925

Pages: 917-925.

Full text of article: Russian language.

Abstract:
Here, we theoretically demonstrate that if a Gaussian optical vortex is distorted by a random phase screen (diffuser) then the average intensity distribution in the focus of a spherical lens has a form of a ring with a nonzero value on the optical axis. The radius of the average-intensity ring depends on both the topological charge of an optical vortex and on the diffusing power of the diffuser. Therefore, the value of the topological charge cannot be unambiguously determined from the radius of the average intensity ring. However, the value of the topological charge of the optical vortex can be obtained from the number of points of phase singularity that can be determined using a Shack-Hartmann wavefront sensor. It is also shown that if we use a linear combination of two optical vortices, then the average intensity distribution has local maxima, the number of which is equal to the difference of the topological charges of the two original vortices. The number of these maxima no longer depends on the scattering force of the diffuser and can serve as an indicator for optical vortex identification. Modeling and experiments confirm the theoretical conclusions.

Keywords:
optical vortex, topological charge, random screen, diffuser, scattering medium.

Citation:
Kotlyar VV, Kovalev AA, Porfirev AP. Topological stability of optical vortices diffracted by a random phase screen. Computer Optics 2019; 43(6): 917-925. DOI: 10.18287/2412-6179-2019-43-6-917-925.

Acknowledgements:
This work was partly funded by the Russian Foundation for Basic Research under projects 18-29-20003 ("Average intensity of an optical vortex scattered by a diffuser" and "Experiment") and 18-07-01129 (Simulation of the Gaussian optical vortex) and by the RF Ministry of Science and Higher Education within the state project of FSRC "Crystallography and Photonics" RAS under agreement 007-ГЗ/Ч3363/26 ("Simulation of a superposition of two Gaussian optical vortices").

References:

  1. Gbur G, Tyson RK. Vortex beam propagation through atmospheric turbulence and topological charge conservation. J Opt Soc A 2008; 25: 225-230.
  2. Krenn M, Fickler R, Fink M, Handsteiner J, Malik M, Sheidl T, Ursin R, Zeilinger A. Communication with spatially modulated light through turbulent air across Vienna. New J Phys 2014; 16: 113028.
  3. Soifer VA, Korotkova O, Khonina SN, Shchepakina EA. Vortex beams in turbulent media: Review. Computer Optics 2016; 40(5): 605-624. DOI: 10.18287/2412-6179-2016-40-5-605-624.
  4. Mandel L, Wolf E. Optical coherence and quantum optics. Cambridge: Cambridge University Press; 1995.
  5. Mei Z, Korotkova O. Random sources generating ring-shaped beams. Opt Lett 2013; 38(2): 91-93.
  6. Cang J, Xiu P, Liu X. Propagation of Laguerre-Gaussian and Bessel-Gaussian Schell-model beams through paraxial optical systems in turbulent atmosphere. Opt Las Techn 2013; 54(30): 35-41.
  7. Zhou Y, Yuan Y, Qu J, Huang W. Propagation properties of Laguerre-Gaussian correlated Schell-model beam in non-Kolmogorov turbulence. Opt Express 2016; 24(10): 10682-10693.
  8. Chen Y, Wang F, Zhao C, Cai Y. Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam. Opt Express 2014; 22(5): 5826-5838.
  9. Karpeev SV, Paranin VD, Kirilenko MS. Comparison of the stability of Laguerrе-Gauss vortex beams to random fluctuations of the optical environment. Computer Optics 2017; 41(2): 208-217. DOI: 10.18287/2412-6179-2017-41-2-208-217.
  10. Porfirev AP, Kirilenko MS, Khonina SN, Skidanov RV, Soifer VA. Study of propagation of vortex beams in aerosol optical medium. Appl Opt 2017; 56(11): E8-E15. DOI: 10.1364/AO.56.0000E8.
  11. Khonina SN, Karpeev SV, Paranin VD. A technique for simultaneous detection of individual vortex states of Laguerre–Gaussian beams transmitted through an aqueous suspension of microparticles. Opt Laser Eng 2018; 105: 68-74. DOI: 10.1016/j.optlaseng.2018.01.006.
  12. Wang W, Wu Z, Shang Q, Bai L. Propagation of Bessel Gaussian beams through non-Kolmogorov turbulence based on Rytov theory. Opt Express 2018; 26(17): 21712-21724.
  13. Wang W, Wu Z, Shang Q, Bai L. Propagation of multiple Bessel Gaussian beams through weak turbulence. Opt Express 2019; 27(9): 12780-12793. Kotlyar VV, Kovalev AA, Porfirev AP.
  14. Calculation of fractional orbital angular momentum of superpositions of optical vortices by intensity moments. Opt Express 2019; 27(8): 11236-11251. DOI: 10.1364/OE.27.011236.

 


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20