(43-6) 09 * << * >> * Russian * English * Content * All Issues

Feasibility of generating surface plasmon polaritons with a given orbital momentum on cylindrical waveguides using diffractive optical elements

B.A. Knyazev1,2, O.E. Kameshkov1,2, A.K. Nikitin1,3, V.S. Pavelyev1,4,5, Yu.Yu. Choporova1,2

Novosibirsk State University,
630090, Russia, Novosibirsk, Pirogovа St., 1,
Budker Institute of Nuclear Physics,
630090, Russia, Novosibirsk, Lavrentiev Ave, 11,
Scientific and Technological Center for Unique Instrumentation RAS,
15 Butlerova St., Moscow, 117342, Russia,
Samara National Research University,
Moskovskoye Shosse 34, 443086, Samara, Russia,
IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
Molodogvardeyskaya 151, 443001, Samara, Russia

 PDF, 984 kB

DOI: 10.18287/2412-6179-2019-43-6-992-1000

Pages: 992-1000.

Full text of article: Russian language.

Abstract:
Three optical systems employing diffractive optical elements to generate surface plasmon polaritons (SPP) with orbital angular momentum on axisymmetric conductors are considered. In all three systems, the incident radiation is first converted by binary spiral phase axicons into a set of plane waves converging to the optical axis. In the zone of intersection of these waves, a "twisted" Bessel beam is formed. By fitting the diameter of the first ring of the Bessel beam to the diameter of the cylindrical conductor, it is possible to generate a rotating SPP by the "end-fire coupling" method. The use of an additional lens makes it possible to convert the SPP-exciting Bessel beam into a vortex annular beam whose diameter is independent of the topological charge of the beam. In the third scheme, converging plane waves are “intercepted” by a cylindrical metal diffraction grating, which forms twisted SPPs on a cylindrical conductor connected to the grating. Examples of the possible use of the proposed systems in experiments on a terahertz free electron laser are presented.

Keywords:
surface plasmon polariton, binary phase axicon, cylindrical grating.

Citation:
Knyazev BA, Kameshkov OE, Nikitin AK, Pavelyev VS, Choporova YuYu. Feasibility of generating surface plasmon polaritons with a given orbital momentum on cylindrical waveguides using diffractive optical elements. Computer Optics 2019; 43(6): 992-1000. DOI: 10.18287/2412-6179-2019-43-6-992-1000.

Acknowledgements:
This work was supported by a grant from the Russian Science Foundation 19-12-00103.

References:

  1. Zhizhin GN, Kapusta OI, Moskaleva MA, Nazin VG, Yakovlev VA. Spectroscopy of surface waves and the properties of the surface. Sov Phys Usp 1975; 18: 927-928.
  2. Zhizhin GN, Moskaleva MA, Shomina EV, Yakovlev VA. Surface electromagnetic wave propagation on metal surfaces. In Book: Agranovich VM, Mills DL, eds. Surface polaritons. Electromagnetic waves at surfaces and interfaces. Ch 3. Amsterdam, New York, Oxford: North-Holland Publishing Company; 1982.
  3. Raether H. Surface plasmons on smooth and rough surfaces and on gratings. Springer-Verlag; 1988.
  4. Maier SA. Plasmonics: fundamentals and application. Springer; 2007: 233.
  5. Gerasimov VV, Knyazev BA, Kotelnikov IA, Nikitin AK, Cherkassky VS, Kulipanov GN, Zhizhin GN. Surface plasmon polaritons launched using a terahertz free-electron laser: propagation along a gold–ZnS–air interface and decoupling to free waves at the surface edge. J Opt Soc Am B 2013; 30(8): 2182-2190.
  6. Leuthold J, Hoessbacher C, Muehlbrandt S, Melikyan A, Kohl M, Koos C, Freude W, Dolores-Calzadilla V, Smit M, Suarez I, Martínez-Pastor J. Plasmonic communications: light on a wire. Optics and Photonics News 2013; 24(5): 28-35.
  7. Davis TJ, Gómez DE, Roberts A. Plasmonic circuits for manipulating optical information. Nanophotonics 2017; 6(3): 543-559.
  8. Zhizhin GN, Moskaleva MA, Shomina EV, Yakovlev VA. Edge effects due to propagation of surface IR. JETP Lett 1979; 29(9): 486-489.
  9. Nazarov M, Coutaz JL, Shkurinov A, Garet F. THz surface plasmon jump between two metal edges. Opt Commun 2007; 277(1): 33-39.
  10. Gerasimov VV, Knyazev BA, Nikitin AK, Zhizhin GN. Experimental investigations into capability of terahertz surface plasmons to bridge macroscopic air gaps. Opt Express 2015; 23(26): 33448-33459.
  11. Stockman MI, Kneipp K, Bozhevolnyi SI, Saha S, Dutta A, Ndukaife J, Kinsey N, Reddy H, Guler U, Shalaev VM, Boltasseva A. Roadmap on plasmonics. J Opt 2018; 20(4): 043001.
  12. Kuzmin FV, Knyazev BA. Surface electromagnetic waves: from visible range to microwaves. Vestnik NSU, seriya Physics 2007; 2(1): 109-122.
  13. Begley DL, Alexander RW, Ward CA, Miller R, Bell RJ. Propagation distances of surface electromagnetic waves in the far infrared. Surf Sci 1979; 81(1): 245-251.
  14. Koteles ES, McNeill WH. Far infrared surface plasmon propagation. Int J Infrared Millimeter Terahertz Waves 1981; 2: 361-371.
  15. Schlesinger Z, Webb BC, Sievers AJ. Attenuation and coupling of far infrared surface plasmons. Solid State Commun 1981; 39: 1035-1039.
  16. Jeon TI, Grischkowsky D. THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet. Appl Phys Lett 2006; 88(6): 061113.
  17. Nazarov M, Garet F, Armand D, Shkurinov A, Coutaz JL. Surface plasmon THz waves on gratings. Comptes Rendus Physique 2008; 9(2): 232-247.
  18. Knyazev BA, Gerasimov VV, Nikitin AK, Azarov IA, Choporova YY. Propagation of terahertz surface plasmon polaritons around a convex metal–dielectric interface. J Opt Soc Am B 2019; 36(6): 1684-1689.
  19. Wang K, Mittleman DM. Metal wires for terahertz wave guiding. Nature 2004; 432(7015): 376-379.
  20. Wang K, Mittleman DM. Guided propagation of terahertz pulses on metal wires. J Opt Soc Am B 2005; 22(9): 2001-2008.
  21. Van der Valk NC, Planken PC. Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires. Appl Phys Lett 2005; 87(7): 071106.
  22. Maier SA, Andrews SR, Martin-Moreno L, Garcia-Vidal FJ. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys Rev Lett 2006; 97(17): 176805.
  23. Fernandez-Dominguez AI, Martin-Moreno L, Garcia-Vidal FJ, Andrews SR, Maier SA. Spoof surface plasmon polariton modes propagating along periodically corrugated wires. IEEE Journal of Selected Topics in Quantum Electronics 2008; 14(6): 1515-1521.
  24. Rüting F, Fernández-Domínguez AI, Martín-Moreno L, García-Vidal FJ. Subwavelength chiral surface plasmons that carry tuneable orbital angular momentum. Phys Rev B 2012; 86(7): 075437.
  25. Yao HZ, Zhong S. Wideband circularly polarized vortex surface modes on helically grooved metal wires. IEEE Photon J 2015; 7(6): 1-7.
  26. Fernández-Domínguez AI, Williams CR, García-Vidal FJ, Martín-Moreno L, Andrews SR, Maier SA. Terahertz surface plasmon polaritons on a helically grooved wire. Appl Phys Lett 2008; 93(14): 141109.
  27. Edelmann A, Moeller L, Jahns J. Coupling of terahertz radiation to metallic wire using end-fire technique. Electron Lett 2013; 49(14): 884-886.
  28. Edelmann A, Helfert S, Jahns J. Shaping of electromagnetic fields for THz plasmonics. Proc SPIE 2014; 8999: 899913.
  29. Knyazev BA, Choporova YY, Mitkov MS, Pavelyev VS, Volodkin BO. Generation of terahertz surface plasmon polaritons using nondiffractive Bessel beams with orbital angular momentum. Phys Rev Lett 2015; 115(16): 163901. DOI: 10.1103/PhysRevLett.115.163901.
  30. Choporova YY, Knyazev BA, Kulipanov GN, Pavelyev VS, Scheglov MA, Vinokurov NA, Volodkin BO, Zhabin VN. High-power Bessel beams with orbital angular momentum in the terahertz range. Phys Rev A 2017; 96(2): 023846. DOI: 10.1103/PhysRevA.96.023846.
  31. Shevchenko OA, Arbuzov VS, Vinokurov NA, Vobly PD, Volkov VN, Getmanov YaV, Gorbachev YaI, Davidyuk IV, Deychuly OI, Dementyev EN, Dovzhenko BA, Knyazev BA, Kolobanov EI, Kondakov AA, Kozak VR, Kozyrev EV, Kubarev VV, Kulipanov GN, Kuper EA, Kuptsov IV, Kurkin GYa, Krutikhin SA, Medvedev LE, Motygin SV, Ovchar VK, Osipov VN, Petrov VM, Pilan AM, Popik VM, Repkov VV, Salikova TV, Sedlyarov IK, Serednyakov SS, Skrinsky AN, Tararyshkin SV, Tribendis AG, Tcheskidov VG, Chernov KN, Scheglov MA. The Novosibirsk Free Electron Laser – unique source of terahertz and infrared coherent radiation. Physics Procedia 2016; 84: 13-18.
  32. Knyazev BA, Azarov IA, Chesnokov EN, Choporova YY, Gerasimov VV, Gorbachev YI, Getmanov YV, Goldenberg BG, Kameshkov OE, Koshlyakov PV, Kotelnikov IA, Kozlov AS, Kubarev VV, Kulipanov GN, Malyshkin SB, Nikitin AK, Nikitin PA, Osintseva ND, Pavelyev VS, Peltek SE, Petrov AK, Popik VM, Salikova TV, Scheglov MA, Seredniakov SS, Shastin VN, Shevchenko OA, Shvets VA, Skorokhod DA, Skrinsky AN, Veber SL, Vinokurov NA, Voloshinov VB, Zhukavin RKh. Recent experiments at NovoFEL user stations. EPJ Web of Conferences 2018; 195: 00002. DOI: 10.1051/epjconf/201819500002.
  33. Andreev NE, Bychkov SS, Kotlyar VV, Margolin LY, Pyatnitskii LN, Serafimovich PG, Formation of high-power hollow Bessel light beams. Quantum Electron 1996; 26: 126-130. DOI: 10.1070/QE1996v026n02ABEH000607.
  34. Knyazev BA, Serbo VG. Beams of photons with nonzero orbital angular momentum projection: new results. Phys Usp 2018; 61(5): 449-479.
  35. Kozlova ES, Kotlyar VV. Tight focusing of laser light using a surface plasmon polariton in a silver nano-strip and nano-ring on silica glass. Computer Optics 2016; 40(5): 629-634. – DOI: 10.18287/2412-6179-2016-40-5-629-634.
  36. Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photon 2009; 1: 1-57.
  37. Chang L, Sun X, Shang H, Liu P, Hall TJ, Sun D. Analysis of the fiber-waveguide coupling efficiency and the resulting polarization dependent loss. International Conference on Numerical Simulation of Optoelectronic Devices 2017: 155-156. DOI: 10.1109/NUSOD.2017.8010038.
  38. Fisher C, Botten LC, Poulton CG, McPhedran RC, de Sterke CM. End-fire coupling efficiencies of surface plasmons for silver, gold, and plasmonic nitride compounds. J Opt Soc Am B 2016; 33(6): 1044-1054.
  39. Gerasimov VV, Knyazev BA, Lemzyakov AG, Nikitin AK, Zhizhin GN. Growth of terahertz surface plasmon propagation length due to thin-layer dielectric coating. J Opt Soc Am B 2016; 33(11): 2196-2203.
  40. Arrizon V, Sanchez-de-La-Llave D, Ruiz U, Mendez G. Efficient generation of an arbitrary nondiffracting Bessel beam employing its phase modulation. Opt Lett 2009; 34: 1456-1458.
  41. Khonina SN, Porfirev AP. 3D transformations of light fields in the focal region implemented by diffractive axicons. Appl Phys B 2018; 124: 191. DOI: 10.1007/s00340-018-7060-4.
  42. Syubaev S, Zhizhchenko A, Vitrik O, Porfirev A, Fomchenkov S, Khonina S, Kudryashov S, Kuchmizhak A. Chirality of laser-printed plasmonic nanoneedles tunable by tailoring spiral shape pulses. Appl Surf Sci 2019; 470: 526-534. DOI: 10.1016/j.apsusc.2018.11.128.
  43. Mukina LS, Nazarov MM, Shkurinov AP. Propagation of THz plasmon pulse on corrugated and flat metal surface. Surf Sci 2006; 600(20): 4771-4776.

 


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20