(43-6) 09 * << * >> * Russian * English * Content * All Issues
  
Feasibility of  generating surface plasmon polaritons with a given orbital momentum on  cylindrical waveguides using diffractive optical elements
B.A. Knyazev1,2, O.E. Kameshkov1,2, A.K. Nikitin1,3, V.S. Pavelyev1,4,5, Yu.Yu. Choporova1,2
  1 Novosibirsk State University, 
630090, Russia, Novosibirsk, Pirogovа St., 1,
    2 Budker Institute of Nuclear Physics, 
630090, Russia, Novosibirsk, Lavrentiev Ave, 11,
    3 Scientific and Technological Center for Unique Instrumentation RAS, 
15 Butlerova St., Moscow, 117342, Russia,
    4 Samara National Research University, 
Moskovskoye Shosse 34, 443086, Samara, Russia,
    5 IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS, 
    Molodogvardeyskaya 151, 443001, Samara, Russia
  
  PDF, 984 kB
DOI: 10.18287/2412-6179-2019-43-6-992-1000
Pages: 992-1000.
Full text of article: Russian language.
 
Abstract:
Three optical systems  employing diffractive optical elements to generate surface plasmon polaritons  (SPP) with orbital angular momentum on axisymmetric conductors are considered.  In all three systems, the incident radiation is first converted by binary  spiral phase axicons into a set of plane waves converging to the optical axis.  In the zone of intersection of these waves, a "twisted" Bessel beam  is formed. By fitting the diameter of the first ring of the Bessel beam to the  diameter of the cylindrical conductor, it is possible to generate a rotating  SPP by the "end-fire coupling" method. The use of an additional lens  makes it possible to convert the SPP-exciting Bessel beam into a vortex annular  beam whose diameter is independent of the topological charge of the beam. In  the third scheme, converging plane waves are “intercepted” by a cylindrical  metal diffraction grating, which forms twisted SPPs on a cylindrical conductor  connected to the grating. Examples of the possible use of the proposed systems  in experiments on a terahertz free electron laser are presented.
Keywords:
surface plasmon  polariton, binary phase axicon, cylindrical grating.
Citation:
  Knyazev BA, Kameshkov  OE, Nikitin AK, Pavelyev VS, Choporova YuYu. Feasibility of generating surface  plasmon polaritons with a given orbital momentum on cylindrical waveguides  using diffractive optical elements. Computer Optics 2019; 43(6): 992-1000. DOI: 10.18287/2412-6179-2019-43-6-992-1000.
Acknowledgements:
This work was supported  by a grant from the Russian Science Foundation 19-12-00103.
References:
  - Zhizhin GN, Kapusta OI,  Moskaleva MA, Nazin VG, Yakovlev VA. Spectroscopy of surface waves and the  properties of the surface. Sov Phys Usp 1975; 18: 927-928.
 
  - Zhizhin GN, Moskaleva  MA, Shomina EV, Yakovlev VA. Surface electromagnetic wave propagation on metal  surfaces. In Book: Agranovich VM, Mills DL, eds. Surface polaritons.  Electromagnetic waves at surfaces and interfaces. Ch 3. Amsterdam, New York, Oxford: North-Holland  Publishing Company; 1982.
 
  - Raether H. Surface plasmons on  smooth and rough surfaces and on gratings. Springer-Verlag; 1988.
     
  - Maier SA. Plasmonics: fundamentals  and application. Springer; 2007: 233.
     
  - Gerasimov VV, Knyazev BA, Kotelnikov  IA, Nikitin AK, Cherkassky VS, Kulipanov GN, Zhizhin GN. Surface plasmon polaritons  launched using a terahertz free-electron laser: propagation along a  gold–ZnS–air interface and decoupling to free waves at the surface edge. J Opt  Soc Am B 2013; 30(8): 2182-2190.
     
  - Leuthold J, Hoessbacher C, Muehlbrandt S, Melikyan A,  Kohl M, Koos C, Freude W, Dolores-Calzadilla V, Smit M, Suarez I,  Martínez-Pastor J. Plasmonic communications: light on a wire. Optics and  Photonics News 2013; 24(5): 28-35.
     
  - Davis TJ, Gómez DE, Roberts A.  Plasmonic circuits for manipulating optical information. Nanophotonics 2017;  6(3): 543-559.
     
  - Zhizhin GN, Moskaleva MA, Shomina  EV, Yakovlev VA. Edge effects due to propagation of surface IR. JETP Lett 1979;  29(9): 486-489.
     
  - Nazarov M, Coutaz JL, Shkurinov A,  Garet F. THz surface plasmon jump between two metal edges. Opt Commun 2007;  277(1): 33-39.
     
  - Gerasimov  VV, Knyazev BA, Nikitin AK, Zhizhin GN. Experimental investigations into  capability of terahertz surface plasmons to bridge macroscopic air gaps. Opt Express  2015; 23(26): 33448-33459.
     
  - Stockman MI,  Kneipp K, Bozhevolnyi SI, Saha S, Dutta A, Ndukaife J, Kinsey N, Reddy H, Guler  U, Shalaev VM, Boltasseva A. Roadmap on plasmonics. J Opt 2018; 20(4): 043001.
     
  - Kuzmin  FV, Knyazev BA. Surface electromagnetic waves: from visible range to  microwaves. Vestnik NSU, seriya Physics 2007; 2(1): 109-122.
     
  - Begley  DL, Alexander RW, Ward CA, Miller R, Bell RJ. Propagation distances of surface  electromagnetic waves in the far infrared. Surf Sci 1979; 81(1): 245-251.
     
  - Koteles ES, McNeill WH. Far infrared  surface plasmon propagation. Int J Infrared Millimeter Terahertz Waves 1981; 2:  361-371.
     
  - Schlesinger Z, Webb BC, Sievers AJ.  Attenuation and coupling of far infrared surface plasmons. Solid State Commun  1981; 39: 1035-1039.
     
  - Jeon TI, Grischkowsky D. THz Zenneck  surface wave (THz surface plasmon) propagation on a metal sheet. Appl Phys Lett  2006; 88(6): 061113.
     
  - Nazarov M, Garet F, Armand D,  Shkurinov A, Coutaz JL. Surface plasmon THz waves on gratings. Comptes Rendus  Physique 2008; 9(2): 232-247.
     
  - Knyazev BA, Gerasimov VV, Nikitin  AK, Azarov IA, Choporova YY. Propagation of terahertz surface plasmon  polaritons around a convex metal–dielectric interface. J Opt Soc Am B  2019; 36(6): 1684-1689.
     
  - Wang K, Mittleman DM. Metal wires for  terahertz wave guiding. Nature 2004; 432(7015): 376-379.
     
  - Wang K, Mittleman DM. Guided propagation of terahertz  pulses on metal wires. J Opt Soc Am B 2005; 22(9): 2001-2008.
     
  - Van der Valk NC, Planken PC. Effect  of a dielectric coating on terahertz surface plasmon polaritons on metal wires.  Appl Phys Lett 2005; 87(7): 071106.
     
  - Maier  SA, Andrews SR, Martin-Moreno L, Garcia-Vidal FJ. Terahertz surface  plasmon-polariton propagation and focusing on periodically corrugated metal  wires. Phys Rev Lett 2006; 97(17): 176805.
     
  - Fernandez-Dominguez  AI, Martin-Moreno L, Garcia-Vidal FJ, Andrews SR, Maier SA. Spoof surface  plasmon polariton modes propagating along periodically corrugated wires. IEEE  Journal of Selected Topics in Quantum Electronics 2008; 14(6): 1515-1521.
     
  - Rüting F, Fernández-Domínguez AI,  Martín-Moreno L, García-Vidal FJ. Subwavelength chiral surface plasmons that  carry tuneable orbital angular momentum. Phys Rev B 2012; 86(7): 075437.
     
  - Yao HZ, Zhong S. Wideband circularly  polarized vortex surface modes on helically grooved metal wires. IEEE Photon J  2015; 7(6): 1-7.
     
  - Fernández-Domínguez AI, Williams CR,  García-Vidal FJ, Martín-Moreno L, Andrews SR, Maier SA. Terahertz surface plasmon  polaritons on a helically grooved wire. Appl Phys Lett 2008; 93(14): 141109.
     
  - Edelmann A, Moeller L, Jahns J.  Coupling of terahertz radiation to metallic wire using end-fire technique.  Electron Lett 2013; 49(14): 884-886.
     
  - Edelmann A, Helfert S, Jahns J. Shaping of  electromagnetic fields for THz plasmonics. Proc SPIE 2014; 8999: 899913.
     
  - Knyazev BA, Choporova YY, Mitkov MS,  Pavelyev VS, Volodkin BO. Generation of terahertz surface plasmon polaritons using  nondiffractive Bessel beams with orbital angular momentum. Phys Rev Lett 2015;  115(16): 163901. DOI: 10.1103/PhysRevLett.115.163901. 
     
  - Choporova YY, Knyazev BA, Kulipanov  GN, Pavelyev VS, Scheglov MA, Vinokurov NA, Volodkin BO, Zhabin VN. High-power  Bessel beams with orbital angular momentum in the terahertz range. Phys Rev A  2017; 96(2): 023846. DOI: 10.1103/PhysRevA.96.023846. 
     
  - Shevchenko OA,  Arbuzov VS, Vinokurov NA, Vobly PD, Volkov VN,  Getmanov YaV, Gorbachev YaI, Davidyuk IV, Deychuly OI, Dementyev EN, Dovzhenko  BA, Knyazev BA, Kolobanov EI, Kondakov AA, Kozak VR, Kozyrev EV, Kubarev VV,  Kulipanov GN, Kuper EA, Kuptsov IV, Kurkin GYa, Krutikhin SA, Medvedev LE,  Motygin SV, Ovchar VK, Osipov VN, Petrov VM, Pilan AM, Popik VM, Repkov VV,  Salikova TV, Sedlyarov IK, Serednyakov SS, Skrinsky AN, Tararyshkin SV,  Tribendis AG, Tcheskidov VG, Chernov KN, Scheglov MA. The Novosibirsk Free Electron  Laser – unique source of terahertz and infrared coherent radiation. Physics  Procedia 2016; 84: 13-18.
     
  - Knyazev BA, Azarov IA, Chesnokov EN, Choporova YY,  Gerasimov VV, Gorbachev YI, Getmanov YV, Goldenberg BG, Kameshkov OE,  Koshlyakov PV, Kotelnikov IA, Kozlov AS, Kubarev VV, Kulipanov GN, Malyshkin SB, Nikitin AK, Nikitin PA,  Osintseva ND, Pavelyev VS, Peltek SE, Petrov AK, Popik VM, Salikova TV, Scheglov  MA, Seredniakov SS, Shastin VN, Shevchenko OA, Shvets VA, Skorokhod DA,  Skrinsky AN, Veber SL, Vinokurov NA, Voloshinov VB, Zhukavin RKh. Recent  experiments at NovoFEL user stations. EPJ Web of Conferences 2018; 195: 00002. DOI: 10.1051/epjconf/201819500002. 
     
  - Andreev  NE, Bychkov SS, Kotlyar VV, Margolin LY, Pyatnitskii LN, Serafimovich PG, Formation of high-power hollow Bessel light beams. Quantum  Electron 1996; 26: 126-130. DOI:  10.1070/QE1996v026n02ABEH000607.
     
  - Knyazev BA, Serbo VG. Beams of  photons with nonzero orbital angular momentum projection: new results. Phys Usp  2018; 61(5): 449-479.
     
  - Kozlova ES, Kotlyar VV. Tight  focusing of laser light using a surface plasmon polariton in a silver  nano-strip and nano-ring on silica glass. Computer Optics 2016; 40(5): 629-634. – DOI:  10.18287/2412-6179-2016-40-5-629-634. 
     
  - Zhan Q. Cylindrical vector beams:  from mathematical concepts to applications. Adv Opt Photon 2009; 1: 1-57.
     
  - Chang L, Sun X,  Shang H, Liu P, Hall TJ, Sun D. Analysis of the fiber-waveguide coupling  efficiency and the resulting polarization dependent loss. International  Conference on Numerical Simulation of Optoelectronic Devices 2017: 155-156. DOI: 10.1109/NUSOD.2017.8010038.
     
  - Fisher C, Botten  LC, Poulton CG, McPhedran RC, de Sterke CM. End-fire coupling efficiencies of  surface plasmons for silver, gold, and plasmonic nitride compounds. J Opt  Soc Am B 2016; 33(6): 1044-1054.
     
  - Gerasimov VV, Knyazev BA, Lemzyakov  AG, Nikitin AK, Zhizhin GN. Growth of terahertz surface plasmon propagation  length due to thin-layer dielectric coating. J Opt Soc Am B 2016; 33(11):  2196-2203.
     
  - Arrizon  V, Sanchez-de-La-Llave D, Ruiz U, Mendez G. Efficient generation of an  arbitrary nondiffracting Bessel beam employing its phase modulation. Opt Lett  2009; 34: 1456-1458. 
     
  - Khonina SN, Porfirev AP. 3D  transformations of light fields in the focal region implemented by diffractive  axicons. Appl Phys B 2018; 124: 191. DOI: 10.1007/s00340-018-7060-4. 
     
  - Syubaev S, Zhizhchenko A, Vitrik O,  Porfirev A, Fomchenkov S, Khonina S, Kudryashov S, Kuchmizhak A. Chirality of  laser-printed plasmonic nanoneedles tunable by tailoring spiral shape pulses.  Appl Surf Sci 2019; 470: 526-534. DOI: 10.1016/j.apsusc.2018.11.128. 
     
  - Mukina LS, Nazarov MM, Shkurinov AP. Propagation of  THz plasmon pulse on corrugated and flat metal surface. Surf Sci 2006; 600(20):  4771-4776.
     
 
  
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20