(43-6) 16 * << * >> * Russian * English * Content * All Issues
An algorithm for detecting intense anomalous changes in the time dependence of ionospheric parameters
N.V. Fetisova1
1 Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS,
684034, Russia, Kamchatka region, Paratunka, Mirnaya str. 7
PDF, 875 kB
DOI: 10.18287/2412-6179-2019-43-6-1064-1071
Pages: 1064-1071.
Full text of article: Russian language.
Abstract:
The paper presents a modified multicomponent model of ionospheric parameter time series. The model describes regular variations and anomalous changes of a multi-scale structure that characterize the occurrence of ionospheric irregularities. Identification of the model components is based on a combined application of the wavelet transform and autoregressive-integrated moving average models. An algorithm for analyzing ionospheric parameters has been developed on the basis of the proposed model. The algorithm allows the intensive ionospheric anomalies characterizing the occurrence of strong ionospheric storms to be detected on-line. Results of the evaluation of the algorithm performance are presented. The evaluation is performed by the example of processing and analyzing hourly and 15-minute data on the ionospheric critical frequency (foF2) during magnetic storms in 2015 – 2017. The performed estimations showed the efficiency of the algorithm and the possibility of its application for space weather forecasting.
Keywords:
autoregressive models, wavelet-transform, ionospheric parameters, ionospheric irregularities.
Citation:
Fetisova NV. An algorithm for detecting intense anomalous changes in the time dependence of ionospheric parameters. Computer Optics 2019; 43(6): 1064-1071. DOI: 10.18287/2412-6179-2019-43-6-1064-1071.
Acknowledgements:
The author is grateful to the organizations that recorded the ionospheric and geomagnetic data utilized in the paper and to the Common Use Center “North-Eastern Heliogeophysical Center”.
References:
- Afraimovich EL, Perevalova NP. GPS-monitoring of the Earth’s upper atmosphere [In Russian]. Irkutsk: “GU NU RVH VSNC SO RAMN” Publisher; 2006.
- Danilov AD. Ionospheric F-region response to geomagnetic disturbances. Advances in Space Research 2013; 52(3): 343-366. DOI: 10.1016/j.asr.2013.04.019.
- Nakamura M, Maruyama T, Shidama Y. Using a neural network to make operational forecasts of ionospheric variations and storms at Kokubunji, Japan. Journal of the National Institute of Information and Communications Technology 2009; 56: 391-406.
- Danilov AD. F2-region response to geomagnetic disturbances. Journal of Atmospheric and Solar-Terrestrial Physics 2001; 63. DOI: 10.1016/S1364-6826(00)00175-9.
- Bud’ko NI, Zaitsev AN, Karpachev AT, Kozlov AN, Fillipov BP. Space around us [In Russian]. Troitsk: “TROVANT” Publisher; 2006.
- Mandrikova OV, Fetisova (Glushkova) NV, Al-Kasasbeh RT, Klionskiy DM, Geppener VV, Ilyash MY. Ionospheric parameter modeling and anomaly discovery by combining the wavelet transform with autoregressive models. Annals of Geophysics 2015; 58 (5): A0550. DOI: 10.4401/ag-6729.
- Mandrikova OV, Fetisova NV, Polozov YA, Solovev IS, Kupriyanov MS. Method for modeling of the components of ionospheric parameter time variations and detection of anomalies in the ionosphere coupling of the high and mid latitude ionosphere and its relation to geospace dynamics. Earth, Planets and Space 2015; 67(1): 131-146. DOI: 10.1186/s40623-015-0301-4.
- Mandrikova O, Polozov Yu, Fetisova N, Zalyaev T. Analysis of the dynamics of ionospheric parameters during periods of increased solar activity and magnetic storms. Journal of Atmospheric and Solar-Terrestrial Physics 2018; 181: 116-126. DOI: 10.1016/j.jastp.2018.10.019.
- Mandrikova OV, Glushkova NV, Zhivet’ev IV. Modeling and analysis of ionospheric parameters by a combination of wavelet transform and autoregressive models. Geomagnetism and Aeronomy 2014; 54(5): 593-600. DOI: 10.1134/S0016793214050107.
- Shubin VN, Karpachev AT, Telegin VA, Tchybulya KG, Global model SMF2 of the F2-layer maximum height. Geomagnetism and Aeronomy 2015; 55(5): 609-622. DOI: 10.1134/S001679321505014X.
- Bilitza D, Reinisch BW. International reference ionosphere 2007: Improvement sand new parameters. Advances in Space Research 2008; 42: 599-609.
- Botova MG, Romanovskaya AA, Namgaladze AA. Ionosphere variations: Comparison of model calculations and observation data [In Russian]. Vestnik MSTU 2014; 17(2): 385-393.
- Solomentsev DV, Titov AA, Khattatov BV. Three-dimensional assimilation model of the ionosphere for the European region. Geomagnetism and Aeronomy 2013; 53(1): 73-84. DOI: 10.1134/S0016793212060114.
- Titov AA, Solomentsev DV, Khattatov VU, Khattatov BV, Denysova VI. Comparison of critical frequency foF2 obtained from ionosonde and CAO and IRI models over the Russian Federation [In Russian]. Sovremennye Problemy Distansionnogo Zondirovaniya Zemli iz Kosmosa 2014; 11(1): 255-263.
- Wang R, Zhou C, Deng Z, Ni B, Zhao Z. Predicting foF2 in the China region using the neural networks improved by the genetic algorithm. Journal of Atmospheric and Solar-Terrestrial Physics 2013; 92: 7-17.
- Watthanasangmechai K, Supnithi P, Lerkvaranyu S, Tsugawa T, Nagatsuma T, Maruyama T. TEC prediction with neural network for equatorial latitude station in Thailand. Earth, Planets and Space 2012; 64(6): 473-483.
- Perevalova NP. Estimated parameters of ground-based network of GPS/GLONASS Receivers designed to perform monitoring of ionospheric disturbances of natural and technogenic origin [In Russian]. Solar-Terrestrial Physics 2011; 11: 124-133.
- Mandrikova OV, Geppener VV, Fetisova NV. Generalized multicomponent model of ionospheric parameter time series [In Russian]. Izvestia SPbETU LETI 2018; 10: 31-41.
- Mallat S. A wavelet tour of signal processing. London: Academic Press; 1999.
- Daubechies I. Ten lectures on Wavelets. Pennsylvania: SIAM; 1992.
- Chui C. An introduction to wavelets. USA: Academic Press; 1992.
- Hamoudi M, Zaourar N, Mebarki R, Briqueu L, Parrot M. Wavelet analysis of ionospheric disturbances. EGU General Assembly 2009. Geophysical Research Abstracts 2009; 11(EGU2009-8523).
- Mandrikova OV, Zhizhikina EA. An automatic method for estimating the geomagnetic field. Computer Optics 2015; 39(3): 420-428. DOI: 10.18287/0134-2452-2015-39-3-420-428.
- Vorobev AV, Vorobeva GR. Geoinformation system for amplitude-frequency analysis of geomagnetic variations and space weather observation data. Computer Optics 2017; 41(6): 963-972. DOI: 10.18287/2412-6179-2017-41-6-963-972.
- Mandrikova OV, Solovev IS, Zalyaev TL. Methods of analysis of geomagnetic field variations and cosmic ray data. Earth, Planet and Space 2014; 66(1): DOI: 10.1186/s40623-014-0148-0.
- Kato H, Takiguchi Y, Fukayama D, Shimizu Y, Maruyama T, Ishii M. Development of automatic scaling software of ionospheric parameters. Journal of the National Institute of Information and Communication Technology 2009; 56: 465-474.
- Box G, Jenkins G. Time series analysis: Forecasting and control. San Francisco: Holden Day; 1970.
- Privalsky VE, Panchenko VA, Asarina EYu. Time series models [In Russian]. Sankt-Petersburg: “Gidrometeoizdat” Publisher; 1992.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20