(43-6) 23 * << * >> * Russian * English * Content * All Issues
Control of transverse mode content and polarization structure of terahertz coherent beams
V.S. Pavelyev1,2, Yu.Yu. Choporova3,4, N.D. Osintseva3,4, K.N. Tukmakov1,2, B.A. Knyazev3,4
1 Samara National Research University, Moskovskoye Shosse 34, 443086, Samara, Russia,
2 IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
Molodogvardeyskaya 151, 443001, Samara, Russia,
3 Budker Institute of Nuclear Physics of SB RAS, Novosibirsk, Russia,
4 Novosibirsk State University, Novosibirsk, Russia
PDF, 1290 kB
DOI: 10.18287/2412-6179-2019-43-6-1103-1108
Pages: 1103-1108.
Full text of article: Russian language.
Abstract:
The paper is devoted to investigation of forming multimode coherent beams of terahertz radiation with pre-given transverse mode content and terahertz vector beams by use of silicon diffractive optical elements forming single modes from terahertz free-electron laser illuminating beam.
Keywords:
diffractive optics, Free-electron lasers, terahertz radiation, Gaussian-Hermite modes.
Citation:
Pavelyev VS, Choporova YuYu, Osintseva ND, Tukmakov KN, Knyazev BA. Control of transverse mode content and polarization structure of terahertz coherent beams. Computer Optics 2019; 43(6): 1103-1108. DOI: 10.18287/2412-6179-2019-43-6-1103-1108.
Acknowledgements:
This work was supported by the grant of the RSF ##19-72-20202 regarding the experimental scheme for the formation of multimode beams with the given transverse-mode composition. The work was partly funded by the Russian Federation Ministry of Science and Higher Education within a state contract with the “Crystallography and Photonics” # 007-ГЗ/Ч3363/26 regarding the analysis of experimental results. Experiments were carried out using the shared research center “Siberian Synchrotron and Terahertz Radiation Centre” at the Novosibirsk FEL facility.
References:
- Kulipanov GN, et al. Novosibirsk free electron laser–facility description and recent experiments. IEEE Transactions on Terahertz Science and Technology 2015; 5(5): 798-809.
- Glyavin MYu. Development and applications of THz gyrotrons. EPJ Web of Conferences 2017; 149: 01008.
- Bubnov GM, Lesnov IV, Vdovin VF. Data rates of SubTHz wireless telecommunication channels. EPJ Web of Conferences 2017; 149: 02012.
- Kulipanov GN, Lisenko AA, Matvienko GG, Oshlakov VK, Kubarev VV, Chesnokov EN, Babchenko SV. Experimental study of the interaction between terahertz radiation from the Novosibirsk free-electron laser and water aerosol [In Russian]. Optika Atmosfery i Okeana 2014; 27(12): 1070-1073.
- Choporova YuYu, Knyazev BA, Kulipanov GN, Pavelyev VS, Scheglov MA, Vinokurov NA, Volodkin BO, Zhabin VN. High-power Bessel beams with orbital angular momentum in the terahertz range. Phys Rev A 2017; 96(2): 023846. DOI: 10.1103/PhysRevA.96.023846.
- Sobolev DI, Denisov GG, Eremeev AG, Holoptsev VV, Tsvetkov AI. Polarization-dependent TE11-to-TE11/TE01 waveguide mode converter for transmission line mode switching. EPJ Web of Conferences 2017; 149: 04017.
- Agafonov AN, Choporova YuYu, Kaveev AK, Knyazev BA, Kropotov GI, Pavelyev VS, Tukmakov KN, Volodkin BO. Control of transverse mode spectrum of Novosibirsk free electron laser radiation. Appl Opt 2015; 54(12): 3635-3639. DOI: 10.1364/AO.54.003635.
- Pavelyev VS, Agafonov AN, Volodkin BO, Tukmakov KN, Knyazev BA, Choporova YuYu. Terahertz optical elements for control of high-power laser irradiation. EPJ Web of Conferences 2018; 195: 07006.
- Golub MA, Karpeev SV, Krivoshlykov SG, Prokhorov AM, Sisakyan IN, Soifer VA. An experimental-study into the power distribution over transverse-modes in a fiber-optic waveguide with the use of spatial filters. Kvantovaya Elektronika 1984; 11(9): 1869-1871.
- Agafonov AN, Volodkin BO, Volotovsky SG, et al. Silicon optics for focusing of terahertz laser radiation in a given two-dimensional domain. Computer Optics 2013; 37(4): 464-470.
- Agafonov AN, Volodkin BO, Kaveev AK, Knyazev BA, Kropotov GI, Pavel’ev VS, Soifer VA, Tukmakov KN, Tsygankova EV, Choporova YuYu. Silicon diffractive optical elements for high-power monochromatic terahertz radiation. Optoelectronics, Instrumentation and Data Processing 2013; 49(2): 189-195. DOI: 10.3103/S875669901302012X.
- Golub MA, Karpeev SV, Krivoshlykov SG, Prokhorov AM, Sisakyan IN, Soifer VA. Spatial filter investigation of the distribution of power between transverse modes in a fiber waveguide. Sov J Quantum Electron 1984; 14(9): 1255-1256. DOI: 10.1070/QE1984v014n09ABEH006201.
- Soifer VA, ed. Methods for computer design of diffractive optical elements. New York: John Wiley & Sons Inc; 2002. ISBN: 978-0-471-09533-0.
- Golub MA, Karpeev SV, Kazanskiĭ NL, Mirzov AV, Sisakyan IN, Soĭfer VA, Uvarov GV. Spatial phase filters matched to transverse modes. Sov J Quantum Electron 1988; 18(3): 392-393. DOI: 10.1070/QE1988v018n03ABEH011528.
- Soifer VA, Golub MA. Laser beam mode selection by computer generated holograms. CRC Press; 1994. ISBN: 0-8493-2476-9.
- Alferov SV, Khonina SN, Karpeev SV. Study of polarization properties of fiber-optics probes with use of a binary phase plate. J Opt Soc Am A 2014; 31(4): 802-807. DOI: 10.1364/JOSAA.31.000802.
- Khonina SN, Kotlyar VV, Soifer VA, Honkanen M, Lautanen J, Turunen J. Generation of rotating Gauss-Laguerre modes with binary-phase diffractive optics. J Mod Opt 1999; 46(2): 227-238. DOI: 10.1080/09500349908231267.
- Winnerl S, et al. Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas. Opt Express 2009; 17(3): 1571-1576.
- Kan K, et al. Radially polarized terahertz waves from a photoconductive antenna with microstructures. Appl Phys Lett 2013; 102(22): 221118.
- Deibel JA, Escarra MD, Mittleman DM. Photoconductive terahertz antenna with radial symmetry. Quantum Electronics and Laser Science Conference 2005; 2: 1239-1241.
- Grosjean T, et al. Linear to radial polarization conversion in the THz domain using a passive system. Opt Express 2008; 16(23): 18895-18909.
- Koechner W. Solid-state laser engineering. New York: Springer-Verlag; 1988.
- Khonina SN, Karpeev SV. Grating-based optical scheme for the universal generation of inhomogeneously polarized laser beams. Appl Opt 2010; 49(10): 1734-1738. DOI: 10.1364/AO.49.001734.
- Knyazev BA, et al. Real-time imaging using a high-power monochromatic terahertz source: comparative description of imaging techniques with examples of application. Journal of Infrared, Millimeter, and Terahertz Waves 2011; 32: 1207-1222.
- Khonina SN, Savelyev DA. High-aperture binary axicons for the formation of the longitudinal electric field component on the optical axis for linear and circular polarizations of the illuminating beam. J Exp Theor Phys 2013; 117(4): 623-630. DOI: 10.1134/S1063776113120157.
- Degtyarev SA, Porfirev AP, Khonina SN. Photonic nanohelix generated by a binary spiral axicon. Appl Opt 2016; 55(12): B44-B48. DOI: 10.1364/AO.55.000B44.
- Khonina SN, Porfirev AP. 3D transformations of light fields in the focal region implemented by diffractive axicons. Appl Phys B 2018; 124(9): 191. DOI: 10.1007/s00340-018-7060-4
- Kotlyar VV, Stafeev SS, Nalimov AG, Schulz S, O’Faolain L. Two-petal laser beam near a binary spiral axicon with topological charge 2. Opt Laser Technol 2019; 119: 105649. DOI: 10.1016/j.optlastec.2019.105649.
- Bouchal Z, et al. Orbital angular momentum of mixed vortex beams. Proc SPIE 2007; 6609: 660907.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20