(44-1) 02 * << * >> * Russian * English * Content * All Issues

Modeling of image formation with a space-borne Offner hyperspectrometer

A.A. Rastorguev 1, S.I. Kharitonov 2,3, N.L. Kazanskiy 2,3

Joint Stock Company "Rocket and Space Center" Progress ", Samara, Russia,

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,

Molodogvardeyskaya 151, 443001, Samara, Russia,

Samara National Research University, Moskovskoye shosse, 34, 443086, Samara, Russia

 PDF, 1107 kB

DOI: 10.18287/2412-6179-CO-644

Pages: 12-21.

Full text of article: Russian language.

Abstract:
In this paper, we developed a mathematical model of image formation that allows a predictive hyperspectral image to be generated. The model takes into account the formation of an optical image using a matrix photodetector. The paper presents a numerical modeling of hyperspectral image formation and gives estimates of spatial and spectral resolution, as well as analyzing the adequacy of the results.

Keywords:
spaceborn hyperspectrometer, image formation, Offner scheme, photodetector, resolution, numerical simulation.

Citation:
Rastorguev AA, Kharitonov SI, Kazanskiy NL. Modeling of image formation with a space-borne Offner hyperspectrometer. Computer Optics 2020; 44(1): 12-21. DOI: 10.18287/2412-6179-CO-644.

Acknowledgements:
This work was funded by the RF Ministry of Science and Higher Education within the government project of FSRC «Crystallography and Photonics» RAS (contract N 007-GZ/Ch3363/26).

References:

  1. Ostrikov VN, Plakhotnikov OV, Shulika KM. Simulation estimates of possibilities for on-board hyperspectral sensors on small satellites [In Russian]. Mechanics, management and informatics (see books) 2012; 2(8): 21-25.
  2. Khimenko VI, Okhtilev MYu, Klucharev AA, Matiash VA. Informative feature analysis in data processing for aerospace monitoring [In Russian]. Information and Control Systems 2017; 2(87): 2-12.
  3. Kozinov IA, Maltsev GN. Development and processing of hyperspectral images in optical–electronic remote sensing systems. Optics and spectroscopy 2016; 121(6): 934-946.
  4. Makaretsky EA, Ovchinnikov AV, Gublin AV, Pogorelsky SL, Ponyatsky VM. Modeling the process of forming a hyperspectral image [In Russian]. Recognition – 2018 (conference proceedings) 2018; 160-162.
  5. Selin VA, Emelyanov AA, Sizov OS, Emelyanov KS, Borisov AV. Evaluation of functional expectations of thematic consumers from optical space remote sensing systems of medium resolution [In Russian]. Issledovanie Zemli Iz Kosmosa 2019; 5: 89-98.
  6. Artyukhina NK, Kotov MN. Features of construction remote sensing imaging spectrometers from space [In Russian]. Devices and Methods of Measurements 2010; 1(1): 56-62.
  7. Mouroulis P, Sellar RG, Wilson DW. Optical design of a compact imaging spectrometer for planetary mineralogy. Opt Eng 2007; 46(6): 063001.
  8. Prieto-Blanco X, Montero-Orille C, González- Nuñez H, Mouriz MD, Lago EL, R. de la Fuente. The Offner imaging spectrometer in quadrature. Opt Express 2010; 18: 12756-12769.
  9. Lee JH, Jang TS, Yang H-S, Rhee S-W. Optical design of a compact imaging spectrometer for STSAT3. J Opt Soc Korea 2008; 12(4): 262-268.
  10. Kazanskiy NL, Kharitonov SI, Karsakov SI, Khonina SN. Modeling action of a hyperspectrometer based on the Offner scheme within geometric optics. Computer Optics 2014; 38(2): 271-280.
  11. Doskolovich LL, Bezus EA, Bykov DA. On the compensation of the diffraction orders overlap effect in the Offner spectrometer. Computer Optics 2014; 38(4): 777-781.
  12. Kazanskiy NL, Kharitonov SI, Doskolovich LL, Pavelyev AV. Modeling the performance of a spaceborne hyperspectrometer based on the Offner scheme. Computer Optics 2015; 39(1): 70-76. DOI: 10.18287/0134-2452-2015-39-1-70-76.
  13. Karpeev SV, Khonina SN, Kharitonov SI. Study of the diffraction grating on a convex surface as a dispersive element. Computer Optics 2015; 39(2): 211-217. DOI: 10.18287/0134-2452-2015-39-2-211-217.
  14. Karpeev SV, Khonina SN, Murdagulov AR, Petrov MV. Alignment and study of prototypes of the Offner hyperspectrometer. Vestnik of the Samara State Aerospace University 2016; 15(1): 197-206. DOI: 10.18287/2412-7329-2016-15-1-197-206.
  15. Podlipnov VV, Skidanov RV. Calibration of an imaging hyperspectrometer. Computer Optics 2017; 41(6): 869-874. DOI: 10.18287/2412-6179-2017-41-6-869-874.
  16. Rastorguev AA, Kharitonov SI, Kazanskiy NL. Modeling the illuminance distribution in the detection plane of a spaceborne Offner hyperspectometer. Computer Optics 2017; 41(3): 399-405. DOI: 10.18287/2412-6179-2017-41-3-399-405.
  17. Rastorguev AA, Kharitonov SI, Kazanskiy NL. Modeling of arrangement tolerances for the optical elements in a spaceborne Offner imaging hyperspectrometer. Computer Optics 2018; 42(3): 424-431. DOI: 10.18287/2412-6179-2018-42-3-424-431.
  18. Schroeder G, Traiber H. Technische Optik. Würzburg: Vogel Industrie Medien GmbH & Co KG; 1974.
  19. Shannon RR, Wyant JC, eds. Applied optics and optical engineering. New York: Academic Press; 1983.
  20. Gonzalez RC, Woods RE. Digital image processing. 4th ed. New York: Pearson Education Limited; 2018.
  21. Guzhov VI, Marchenko IO, Hajdukov DS, Ilynikh SP. Sampling the image in real systems using generalized functions [In Russian]. Automatics & Software Enginery 2016; 4(18): 45-52.
  22. CMV2000 Datasheet. 2019. Source: áhttps://ams.com/cmos-imaging-sensorsñ.
  23. MT9M413C36STC Datasheet. 2019. Source: áhttps://www.alldatasheet.com/datasheet-pdf/pdf/97416/MICRON/MT9M413C36STC.htmlñ.
  24. ENVI. 2019. Source: áhttps://www.harrisgeospatial.com/Software-Technology/ENVIñ.
  25. Batrakov AS, Anatolyev AB. Mathematical model for predicting the linear resolution of spaceborne remote-sensing optoelectronic systems. J Opt Technol 2000; 67(7): 680-687.

 


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20