(44-2) 11 * << * >> * Russian * English * Content * All Issues

Resonance characteristics of transmissive optical filters based on metal/dielectric/metal structures

D.V. Nesterenko 1,2

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,
Molodogvardeyskaya 151, 443001, Samara, Russia,
Samara National Research University, Moskovskoye Shosse 34, 443086, Samara, Russia

 PDF, 994 kB

DOI: 10.18287/2412-6179-CO-681

Pages: 219-228.

Full text of article: Russian language.

Abstract:
The resonance characteristics of the Fabry-Pérot resonator modes supported by metal/dielectric/metal planar structures are studied in the case of absorbing media for near-to-normal light incidence. Approximations based on rigorous solution and field-transfer model for the field and resonance line shapes in spectra are attributed to the class of Fano and Lorentz resonances. The analytical expressions are obtained for the propagation constant and field enhancement of the mode, width, height and slope of resonance line shapes in spectra as functions of structural parameters. With estimation of field characteristics of the fabricated loss structures based on aluminum and quartz, the peaks in the transmission spectra can be attributed to the excitation of Fabry-Pérot modes. Fundamental characterization of Fabry-Pérot resonances may find applications in optical processing and sensing.

Keywords:
resonators, optical resonances, planar structures, Fabry-Pérot mode, Lorentz resonanse, approximation.

Citation:
Nesterenko DV. Resonance characteristics of transmissive optical filters based on metal/dielectric/metal structures. Computer Optics 2020; 44(2): 219-228. DOI: 10.18287/2412-6179-CO-681.

Acknowledgements:
This work was partly funded by the Russian Federation Ministry of Science and Higher Education within the State assignment FSRC «Crystallography and Photonics» RAS under agreement 007-ГЗ/Ч3363/26 in part of design of experiment, RFBR (Project No. 18-29-20006 and 18-07-00613) in parts of theoretical, numerical, and experimental studies.

References:

  1. Refki S, Hayashi S, Ishitobi H, Nesterenko DV, Rahmouni A, Inouye Y, Sekkat Z. Resolution enhancement of plasmonic sensors by metal–insulator–metal structures. Annalen Der Physik 2018; 530(4): 1700411. DOI: 10.1002/andp.201700411.
  2. Li Z, Butun S, Aydin K. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photon 2015; 2(2): 183-188.
  3. Refki S, Hayashi S, Rahmouni A, Nesterenko DV, Sekkat Z. Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures. Plasmonics 2015; 11: 443-440. DOI: 10.1007/s11468-015-0047-7.
  4. Cui Y, He Y, Jin Y, Ding F, Yang L, Ye Y, Zhong S, Lin Y, He S. Plasmonic and metamaterial structures as electro-magnetic absorbers. Laser Photon Rev 2014; 8(4): 495-520.
  5. Porto A, Garcia-Vidal FJ, Pendry JB. Transmission resonances on metallic gratings with very narrow slits. Phys Rev Lett 1999; 83: 2845-2848.
  6. Garcia-Vidal FJ, Martin-Moreno L. Transmission and focusing of light in one-dimensional periodically nanostructured metals. Phys Rev B 2002; 66: 155412.
  7. Belotelov VI, Kalish AN, Zvezdin AK, Gopal AV, Vengurlekar AS. Fabry-Perot plasmonic structures for nanophotonics. J Opt Soc Am B 2012; 29(3): 294-299.
  8. Prêtre Ph, Wu LM, Hill RA, Knoesen A. Characterization of electro-optic polymer films by use of decal-deposited reflection Fabry-Perot microcavities. J Opt Soc Am B 1998; 15(1): 379-392.
  9. Fabry C, Pérot A. Théorie et applications d’une nouvelle méthode de spectroscopie interférentielle. Ann de Chim et de Phys 1899; 16(7): 115-144.
  10. Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sens Actuators B Chem 1999; 54(1-2): 3-15.
  11. Nesterenko DV, Sekkat Z. Resolution estimation of the Au, Ag, Cu, and Al single- and double-layer surface plasmon sensors in the ultraviolet, visible, and infrared regions. Plasmonics 2013; 8(4): 1585-1595. DOI: 10.1007/s11468-013-9575-1.
  12. Katsidis CC, Siapkas DI. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl Opt 2002; 41(19): 3978-3987.
  13. Vaughan JM. The Fabry-Perot interferometer: History, theory, practice and applications. New York: Taylor & Francis Group LLC; 1989.
  14. Born M, Wolf E. Principles of optics. 7th ed. Cambridge: University Press; 2007.
  15. Svelto O. Principles of lasers. 4th ed. New York: Springer; 1998.
  16. Ismail N, Kores CC, Geskus D, Pollnau M. Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency dependent reflectivity. Opt Express 2016; 24(15): 16366-16389.
  17. Pollnau M. Counter-propagating modes in a Fabry–Perot-type resonator. Opt Lett 2018; 43(20): 5033-5036.
  18. He Y, Lu D, Zhao L. Reflection Airy distribution of a Fabry-Pérot resonator and its application in waveguide loss measurement. Opt Express 2019; 27(13): 17876-17886.
  19. Nesterenko DV, Hayashi S, Sekkat Z. Asymmetric surface plasmon resonances revisited as Fano resonances. Phys Rev B 2018; 97(23): 235437. DOI: 10.1103/PhysRevB.97.235437.
  20. Nesterenko DV, Pavelkin RA, Hayashi S. Estimation of resonance characteristics of single-layer surface-plasmon sensors in liquid solutions using Fano’s approximation in the visible and infrared regions. Computer Optics 2019; 43(4): 596-604. DOI: 10.18287/2412-6179-2019-43-4-596-604.
  21. Nesterenko DV. Fano approximation for coupled modes in metal-dielectric multilayer structures. J Phys Conf Ser 2019; 1368(5): 052046. DOI: 10.1088/1742-6596/1368/5/052046.
  22. McPeak KM, Jayanti SV, Kress SJP, Meyer S, Iotti S, Rossinelli A, Norris DJ. Plasmonic films can easily be better: Rules and recipes. ACS Photon 2015; 2(3): 326-333.
  23. Malitson I. Interspecimen comparison of the refractive index of fused silica. J Opt Soc Am A 1965; 55(10): 1205-1209.
  24. Kazanskiy NL, Khonina SN, Butt MA. Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review. Phys E Low-dimensional Syst Nanostructures 2020; 117: 113798. DOI: 10.1016/j.physe.2019.113798.
  25. Soifer VA. Diffractive nanophotonics and advanced information technologies. Her Russ Acad Sci 2014; 84(1): 9-18. DOI: 10.1134/ S1019331614010067.
  26. Emelyanov SV, Bykov DA, Golovastikov NV, Doskolovich LL, Soifer VA. Differentiating space–time optical signals using resonant nanophotonics structures. Dokl Phys 2016; 61(3): 108-111. DOI: 10.1134/S1028335816030022.
  27. Doskolovich LL, Bezus EA, Bykov DA, Golovastikov NV, Soifer VA. Resonant properties of composite structures consisting of several resonant diffraction gratings. Opt Express 2019; 27(18): 25814-25828. DOI: 10.1364/OE.27.025814

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20