(44-2) 14 * << * >> * Russian * English * Content * All Issues
  
Object tracking algorithm for a passive positioning system
  
V.K. Klochko 1, S.A. Smirnov 1
 1 Ryazan State Radio Engineering University, Ryazan, Russia
 
 PDF, 756 kB
  PDF, 756 kB
DOI: 10.18287/2412-6179-CO-609
Pages: 244-249.
Full text of article: Russian language.
 
Abstract:
We propose an algorithm  for small-sized mobile object detection and trajectory parameter estimation for  a passive positioning system that consists of several optical, thermal, and  radio sensors. The algorithm is based on a combination of spatial and temporal  processing of observation data. For spatial processing, a set of equations is  solved that defines the sufficient condition for coupling the direction vectors  to probable objects in the image stereo pair. Object coordinates and velocities  for a single observation period are estimated. For temporal processing, the  direction vectors are distributed based on connection to probable objects in a  sequence of the capture intervals. The results of numerical modeling of the  proposed algorithm show the advantage of combining the two approaches in comparison  with the traditional object detection and tracking algorithms.
Keywords:
passive positioning system, object detection, trajectory parameters estimation.
Citation:
  Klochko VK, Smirnov SA. Object tracking algorithm for a passive positioning system. Computer Optics 2020; 44(2): 244-249. DOI: 10.18287/2412-6179-CO-609.
Acknowledgements:
This publication has been prepared as a part of research carried out by Ryazan State Radio Engineering University under the state contract 2.7064.2017/BCh.
References:
  - 
    Bystrov RP, Sokolov AV. Passive radar: Object detection methods [In  Russian]. Moscow:  “Radiotechnika” Publisher, 2008.
 
- Case EE, Zelnio AM, Rigling BD. Low-cost acoustic array for small UAV  detection and tracking. IEEE National Aerospace and Electronics Conference  2008: 110-113. DOI: 10.1109 / NAECON.2008.4806528.
 
- Busset J, et al. Detection and tracking of drones using advanced  acoustic cameras. Proc SPIE 2015; 9647: 96470F. DOI: 10.1117/12.2194309.
 
- Moses A, Rutherford MJ, Valavanis KP. Radar-based detection and  identification for miniature air vehicles. IEEE International Conference on  Control Applications (CCA) 2011: 933-940. DOI: 10.1109/CCA.2011.6044363.
 
- Hoffmann F, et al. Micro-doppler based detection and tracking of UAVs  with multistatic radar. IEEE Radar Conference (RadarConf) 2016: 1-6. DOI:  10.1109/RADAR.2016.7485236.
 
- Kovács L, Benedek C. Visual real-time detection, recognition and  tracking of ground and airborne targets. Proc SPIE 2011; 7873: 787311. DOI:  10.1117/12.872314.
 
- Muraviev VS, Smirnov SA, Strotov VV. Aerial vehicles detection and  recognition for UAV vision system. Computer Optics 2017; 41(4): 545-551. DOI:  10.18287/2412-6179-2017-41-4-545-551.
 
- Katulev A, Kolonskov A, Khramichev A, Yagol’nikov S. Adaptive method and  algorithm for detecting low-contrast objects with an optoelectronic device. J  Opt Technol 2014; 81(2): 75-82. DOI: 10.1364/JOT.81.000075.
 
- Muraviev VS, Muraviev SI. Adaptive algorithm for the selection and  detection of air objects in images [In Russian]. Information and Control 2011;  5: 8-13.
 
- Deshpande SD, et al. Max-mean and max-median  filters for detection of small targets. Proc SPIE 1999; 3809: 74-84. DOI:  10.1117/12.364049.
 
- Wang P, Tian JW, Gao CQ. Infrared small target detection  using directional highpass filters based on LS-SVM. Electron Lett 2009; 45(3):  156-158. DOI: 10.1049/el:20092206.
 
- Srivastava HB. Image pre-processing algorithms for detection of  small/point airborne targets. Defence Science Journal 2009; 59(2): 166-174.  DOI: 10.14429/dsj.59.1505.
 
- Laurenzis M, Hengy S, Hommes A, et al. Multi-sensor field trials for  detection and tracking of multiple small unmanned aerial vehicles flying at low  altitude. Proc SPIE 2017; 10200: 102001A. DOI: 10.1117/12.2261930.
 
- Müller T. Robust drone detection for day/night counter-UAV with static VIS and SWIR cameras. Proc SPIE 2017; 10190: 1019018.  DOI: 10.1117/12.2262575.
 
- Kim B, et al. V-RBNN based small drone detection in augmented datasets  for 3D LADAR system. Sensors 2018; 18(11): 3825. DOI: 10.3390/s18113825.
 
- Hammer M, et al. UAV detection, tracking, and classification by sensor  fusion of a 360° lidar system and an alignable classification sensor. Proc SPIE  2019; 11005: – 110050E. DOI: 10.1117/12.2518427.
 
- Gruzman IS, Kirichuk VS, et al. Digital image processing in information  systems [In Russian]. Novosibirsk:  “Izd. NGTU” Publisher; 2002.
 
- Klochko  VK, Gudkov SM. Space-time processing of object images in passive radio systems.  Optoelectron Instrument Proc 2018; 54(4): 348-354. DOI:  10.3103/S8756699018040052.
 
- Klochko VK. Detection of moving objects by a passive scanning system.  Optoelectron Instrument Proc 2019; 55(1): 59-65. DOI:  10.3103/S8756699019010102.
    
    
- Razin’kov SN, Sirota AA. Performance in the primary  and secondary processing of pulsed radio signals in passive radar systems.  Measurement Techniques 2004; 47(2): 193-198. DOI:  10.1023/B:METE.0000026221.30211.d8. 
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20