(44-3) 20 * << * >> * Russian * English * Content * All Issues
Incremental learning of an abnormal behavior detection algorithm based on principal components
R.A. Shatalin 1, V.R. Fidelman 1, P.E. Ovchinnikov 1
1 Lobachevsky State University of Nizhny Novgorod, Nizny Novgorod, Russia
PDF, 749 kB
DOI: 10.18287/2412-6179-CO-624
Pages: 476-481.
Full text of article: Russian language.
Abstract:
In this paper, we propose an incremental learning scheme for the abnormal behavior detection algorithm based on principal component. The results obtained on a UCSD dataset and our experimental videos at a different number of training samples show that error rates are similar to conventional learning. Moreover, the proposed scheme allows the incremental learning time to be significantly reduced in comparison with a method based on matrix eigendecomposition.
Keywords:
incremental learning, video analysis, anomaly detection, principal component analysis.
Citation:
Shatalin RA, Fidelman VR, Ovchinnikov PE. Incremental learning for abnormal behaviour detection algorithm based on principal components. Computer Optics 2020; 44(3): 476-481. DOI: 10.18287/2412-6179-CO-624.
References:
- Popoola O, Wang K. Video-based abnormal human behavior recognition – A review. IEEE Trans Syst Man Cybern C 2012; 42(6): 865-878.
- Epifancev BN, Pyatkov AA, Kopeykin SA. Multi-sensor systems for monitoring access to restricted areas: capabilities of the intrusion detection video analytical channel. Computer Optics 2016; 40(1): 121-129. DOI: 10.18287/2412-6179-2016-40-1-121-129.
- Sodemann A, Ross M, Borghetti B. A review of anomaly detection in automated surveillance. IEEE Trans Syst Man Cybern C 2012; 42(6): 1257-1272.
- Jolliffe IT. Principal component analysis. 2nd ed. New York: Springer; 2002.
- Shatalin RA, Fidelman VR, Ovchinnikov PE. Abnormal behaviour detection method for video surveillance applications. Computer Optics 2017; 41(1): 37-45. DOI: 10.18287/2412-6179-2017-41-1-37-45.
- Losing V, Hammer B, Wersing H. Incremental on-line
learning: A review and comparison of state of the art algorithms. Neurocomputing, 2018, 275: 1261-1274.
- Maddalena L, Petrosino A. a self-organizing approach to background subtraction for visual surveillance application. IEEE Trans Image Proces 2008; 17(7): 1168-1177.
- Shatalin R, Ovchinnikov P. Background subtraction quality criterion based on morphological operations for behaviour anomaly detection [In Russian]. Control Syst Inform Technol 2014, 56(2):190-4.
- Bouguet JY. Pyramidal implementation of the Lucas Kanade feature tracker. Intel Corp 2000.
- Antonakaki P, Kosmopoulos D, Perantonis S. Detecting abnormal human behavior using multiple cameras. Signal Procces 2009, 89(9): 1723-1738.
- Mahadevan V, Li W, Bhalodia V, Vasconcelos N. Anomaly detection and localization in crowded scenes. IEEE Trans Pattern Anal Machine Intell, 2014, 36(1): 18-31.
- Press WH, Teukolsky SA, Vetterling WT, Flannery BP Numerical recipes: The Art of scientific computing. 3rd ed. New York: Cambridge University Press; 2007.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20