(44-4) 23 * << * >> * Russian * English * Content * All Issues

Simulating shot noise of color underwater images
D.A. Shepelev 1,2, V.P. Bozhkova 1, E.I. Ershov 1, D.P. Nikolaev 1,3

Institute for Information Transmission Problems, RAS,
127051, Moscow, Russia, Bolshoy Karetny per. 19, build 1,
Moscow Institute of Physics and Technology,
141701, Dolgoprudny, Russia, Institutskiy per. 9,
LLC "Smart Engines Service",
117312, Moscow, Russia, Prospect 60-Letiya Oktyabrya 9

 PDF, 5109 kB

DOI: 10.18287/2412-6179-CO-754

Pages: 671-679.

Full text of article: Russian language.

Abstract:
This paper considers methods for simulating color underwater images based on real terrestrial images. Underwater image simulation is widely used for developing and testing methods for improving underwater images. A large group of existing methods uses the same deterministic image transformation model ignoring the presence of noise in images. The paper demonstrates that this significantly affects the overall quality of underwater images simulation. It is shown both theoretically and numerically that the accuracy of the signal-to-noise ratio of underwater images simulated using a deterministic transformation decreases with increasing distance to the object. To solve this problem, a new model of image transformation for simulating underwater images based on terrestrial images is proposed, which considers the presence of noise in the image and is compatible with all simulating methods from the group under consideration. The paper presents the results of the simulation based on the existing and proposed models, showing that at long distances, the new results are better consistent with real data.

Keywords:
underwater imaging, simulation of underwater images, noise simulation, color distortions, underwater image enhancement, color image augmentation, generating ground truth.

Citation:
Shepelev DA, Bozhkova VP, Ershov EI, Nikolaev DP. Simulating shot noise of color underwater images. Computer Optics 2020; 44(4): 671-679. DOI: 10.18287/2412-6179-CO-754.

Acknowledgements:
This work was carried out with a grant from the Russian Science Foundation (Project No. 20-61-47089).

References:

  1. Akkaynak D, Treibitz T. Sea-thru: A method for removing water from underwater images. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019: 1682-1691.
  2. Anwar S, Li C, Porikli F. Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recognit 2020; 98: 107038.
  3. Li J, Skinner KA, Eustice RM, Johnson-Roberson M. WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robot Autom Lett 2017; 3(1): 387-394.
  4. Foresti GL. Visual inspection of sea bottom structures by an autonomous underwater vehicle. IEEE Trans Syst Man Cybern B Cybern 2001; 31(5): 691-705.
  5. Lavest JM, Guichard F, Rousseau C. Multi-view reconstruction combining underwater and air sensors. International Conference on Image Processing 2002; 3: 813-816.
  6. Kahanov Y, Royal JG, Analysis of hull remains of the Dor D vessel, Tantura lagoon, Israel. Int J Naut Archaeol 2001; 30(2): 257-265.
  7. Mangeruga M, Cozza M, Bruno F. Evaluation of underwater image enhancement algorithms under different environmental conditions. J Mar Sci Eng 2018; 6(1): 10.
  8. Skarlatos D, Agrafiotis P, Balogh T, Bruno F, Castro F, Petriaggi BD, Demesticha S, Doulamis A, Drap P, Georgopoulos A. Project iMARECULTURE: advanced VR, immersive serious games and augmented reality as tools to raise awareness and access to European underwater cultural heritage. Euro-Mediterranean Conference 2016: 805-813.
  9. Bryson M, Johnson-Roberson M, Pizarro O, Williams SB. True color correction of autonomous underwater vehicle imagery. J Field Robot 2016; 33(6): 853-874.
  10. IEC 60529:1989. Degrees of Protection Provided by Enclosures (IP Codes). 2.2 edition. Geneva: International Electrotechnical Commission; 2013.
  11. Gracheva MA, Bozhkova VP, Kazakova AA, Nikolaev IP, Rozhkova GI. Subjective assessment of the quality of static and video images from mobile phones. Twelfth Int Conf on Machine Vis (ICMV 2019) 2020; 11433: 737-745.
  12. Berman D, Treibitz T, Avidan S. Diving into haze-lines: Color restoration of underwater images. Proc British Machine Vis Conf (BMVC) 2017; 1(2); 1-12.
  13. Li C, Guo C, Ren W, Cong R, Hou J, Kwong S, Tao D. An underwater image enhancement benchmark dataset and beyond. IEEE Trans Image Process 2020; 29: 4376-4389.
  14. Duarte A, Codevilla F, Gaya JO, Botelho SSC. A dataset to evaluate underwater image restoration methods. OCEANS 2016: 1-6.
  15. Arlazarov VV, Bulatov KB, Chernov TS, Arlazarov VL. MIDV-500: A dataset for identity document analysis and recognition on mobile devices in video stream. Computer Optics 2019; 43(5): 818-824. DOI: 10.18287/2412-6179-2019-43-5-818-824.
  16. Smagina A, Ershov E, Grigoryev A. Multiple light source dataset for colour research. Twelfth Int Conf on Machine Vis (ICMV 2019) 2020; 11433: 635-642.
  17. Boffety M, Galland F, Allais AG. Color image simulation for underwater optics. Appl Opt 2012; 51(23): 5633-5642.
  18. Chang H, Cheng C, Sung C. Single underwater image restoration based on depth estimation and transmission compensation. IEEE J Ocean Eng 2019; 44(4): 1130-1149.
  19. Hu Y, Wang K, Zhao X, Wang H, Li Y. Underwater image restoration based on convolutional neural network. Proc 10th Asian Conf on Machine Learn 2018; 95: 296-311.
  20. Li C-Y, Guo J-C, Cong R-M, Pang Y-W, Wang B. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans Image Process 2016; 25(12): 5664-5677.
  21. Schechner YY, Karpel N. Clear underwater vision. Proc CVPR 2004; 1: 536-543.
  22. Schechner YY, Karpel N. Recovery of underwater visibility and structure by polarization analysis. IEEE J Ocean Eng 2005; 30(3): 570-587.
  23. Zhao X, Jin T, Qu S. Deriving inherent optical properties from background color and underwater image enhancement. Ocean Eng 2015; 94: 163-172.
  24. Peng Y-T, Cosman PC. Underwater image restoration based on image blurriness and light absorption. IEEE Trans Image Process 2017; 26(4): 1579-1594.
  25. Nikolaev DP, Polevoy DV, Tarasova NA. Training data synthesis in text recognition problem solved in three-dimensional space [In Russian]. ITiVS 2014; 3: 82-88.
  26. Emelyanov SO, Ivanova AA, Shvets EA, Nikolaev DP. Methods of training data augmentation in the task of image classification [In Russian]. Sensory Systems 2018; 32(3): 236-245.
  27. Chernyshova YS, Gayer AV, Sheshkus AV. Generation method of synthetic training data for mobile OCR system. Proc SPIE 2018; 10696: 106962G.
  28. Butler DJ, Wulff J, Stanley GB, Black MJ. A naturalistic open source movie for optical flow evaluation. European Conf on Comp Vis (ECCV) 2012; IV: 611-625.
  29. Bielova O, Hänsch R, Ley A, Hellwich O. A digital image processing pipeline for modelling of realistic noise in synthetic images. Proc CVPRW 2019: 2905-2914.
  30. Anwar S, Li C. Diving deeper into underwater image enhancement: A survey. Source: <https://arxiv.org/abs/1907.07863>.
  31. Jahne B. Digital image processing. Berlin: Springer-Verlag; 2005.
  32. Shepelev DA, Bozhkova VP, Ershov  EI, Nikolaev DP.  The problem of underwater images modeling based onterrestrial ones [In Russian]. Proceedings of the VI International Conference on Information Technology and Nanotechnology (ITNT-2020). 2020: In Print.
  33. Sarafraz A, Negahdaripour S, Schechner YY. Performance assessment in solving the correspondence problem in underwater stereo imagery. OCEANS 2010 MTS/IEEE Seattle 2010: 1-7.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20