(44-5) 07 * << * >> * Russian * English * Content * All Issues

Holographic memory updated by contradictory information: influence of low frequency attenuation on response stability
A.V. Pavlov  1

ITMO University, Saint-Petersburg, Russia

 PDF, 993 kB

DOI: 10.18287/2412-6179-CO-668

Pages: 728-736.

Full text of article: Russian language.

A 6f-scheme of Fourier holography with resonant architecture is considered, which implements memory replenishment with new information that contradicts the previously recorded. It is shown that the low-frequency attenuation due to the nonlinearity of the exposure characteristics of holographic recording media in the initial reference holographic image recorded in a narrow filtering range corresponding to the degradation in the correlation plane of the global maximum of the autocorrelation function below the lateral maxima leads to the response instability – an intermittent mode. It is shown that the intermittent mode corresponds to the restructuring of the autocorrelation function of a composite standard recorded in holograms from one range of values of the approximation model parameters to another. It is shown that the correlation length of the composite image recorded in holograms is an order parameter of the system; its rapid change precedes the loss of response stability and the transition to an unstable regime with intermittency. The results of numerical simulation are presented.

Fourier holography, holographic memory, associative memory, correlation function, correlation length, dynamical system, order parameter, stability, intermittency, non-monotonic logic, logic with exclusion.

Pavlov AV. Holographic memory updated by contradictory information: influence of low frequency attenuation on response stability. Computer Optics 2020; 44(5): 728-736. DOI: 10.18287/2412-6179-CO-668.

The work was funded by the Russian Foundation for Basic Research under grant # 18-01-00676-a.


  1. Kwak CH, Kim GY, Javidi B. Volume holographic optical encryption and decryption in photorefractive LiNbO3:Fe crystal. Opt Commun 2019; 437: 95-103. DOI: 10.1016/j.optcom.2018.12.049.
  2. Blau Y, Bar-On O, Hanein Y, Boag A, Scheuer J. Meta-hologram-based authentication scheme employing a speckle pattern fingerprint. Opt Express 2020; 8(6): 8924-8936. DOI: 10.1364/OE.388233.
  3. Zhang L, Zhou X, Wang D, Li N, Bai X, Wang Q. Multiple-image encryption based on optical scanning holography using orthogonal compressive sensing and random phase mask. Opt Eng 2020; 59(10): 102411. DOI: 10.1117/1.OE.59.10.102411.
  4. Yan A, Lu C, Yu J, Tang M, Dong J, Hu Z, Zhang H. Multiple-image encryption based on angular-multiplexing holography with quick response code and spiral phase keys. Appl Opt 2019; 58(34): G6-G10. DOI: 10.1364/AO.58.0000G6.
  5. Psaltis D, Farhat N. Optical information processing based on an associative-memory model of neural nets with thresholding and feedback. Opt Lett 1985; 10(2): 98-100.
  6. Sokolov VK, Shubnikov EI. Optical neural networks based on holographic correlators. Quantum Electron 1995; 25(10): 1032-1036.
  7. Wang W, Yang Y, Wang X, Wang W, Li J. Development of convolutional neural network and its application in image classification: a survey. Opt Eng 2019; 58(4): 040901. DOI: 10.1117/1.OE.58.4.040901.
  8. Amosov OS, Ivanov YS, Zhiganov SV. Human localiztion in video frames using a growing neural gas algorithm and fuzzy inference. Computer Optics 2017; 41(1): 46-58. DOI: 10.18287/2412-6179-2017-41-1-46-58.
  9. Shimobaba T, Kuwata N, Homma M, Takahashi T, Nagahama Y, Sano M, Hasegawa S, Hirayama R, Kakue T, Shiraki A, Takada N, Ito T. Convolutional neural network-based data page classification for holographic memory. Appl Opt 2017; 56(26): 7327-7330. DOI: 10.1364/AO.56.007327.
  10. Agafonova YD, Gaidel AV, Zelter PM, Kapishnikov AV. Efficiency of machine learning algorithms and convolutional neural network for detection of pathological changes in mr images of the brain. Computer Optics 2020; 44(2): 266-273. DOI: 10.18287/2412-6179-CO-671.
  11. Mikaelyan AL, Bobrinev VI, Sokolova LZ. Recording a great number of images by the hologram superposition method [In Russian]. Dokl Akad Nauk SSSR 1970; 191(4): 799-800.
  12. Benferhat S, Dubois D, Prade H. Nonmonotonic reasoning, conditional objects and possibility theory. Artif Intell 1997; 92(1-2): 259-276.
  13. Reiter R. A logic for default reasoning. Artif Intell 1980; 13(1-2): 81-132.
  14. Pavlov AV. On algebraic foundations of fourier holography. Optics and Spectroscopy 2001; 90(3): 452-457.
  15. Pavlov AV. On algebraic foundations of holographic paradigm in artificial intelligence: Algebra of Fourier-dual operations [In Russian]. Proc of V-th Int Conf “Integrated Models and Soft Computing in Artificial Intelligence”. Moscow: "Fizmatlit" Publisher; 2009; 1: 140-148.
  16. Pavlov AV. Algebra of Fourier-dual operations: Logic with Exclusion [In Russian]. Artificial Intelligence and Decision Making 2012; 3: 2-38.
  17. Zadeh L. Fuzzy sets. Inf Control 1965; 8(3): 338-353.
  18. Pavlov AV. The influence of hologram recording conditions and nonlinearity of recording media on the dynamic characteristics of the Fourier holography scheme with resonance architecture. Opt Spectrosc 2015; 119(1): 146-154. DOI: 10.1134/S0030400X1507022X.
  19. Kuleshov AM, Shubnikov EI. Effect of the nonlinearity of the medium and spatial limitations of the filter on signal parameters in a holographic correlator. Opt Spectrosc 1986; 60(3): 369-372.
  20. Shubnikov EI. Signal-to-noise ratio in correlation comparison of images. Opt Spectrosc 1987; 62(2): 268-271.
  21. Shubnikov EI. Effect of additive and multiplicative noise in the correlation comparison of images. Opt Spectrosc 1987; 62(3): 389-392.
  22. Shubnikov EI, Kuleshov AM. Effect of a change in scale and rotation of the image and a shift of the filter on the value of the signal in a holographic correlator. Opt Spectrosc 1983; 55(1): 94-96.
  23. Kuleshov AM, Pavlov AV, Shubnikov EI. Effect of image inclination on the signal of a holographic correlator. Opt Spectrosc 1985; 59(2): 247-250.
  24. Pavlov AV. Influence of geometric distortions om the images correlation. Opt Spectrosc 1991; 70(5): 1337-1341.
  25. Kuleshov AM, Shubnikov EI, Smaeva SA. Optimal property of a matched holographic filter. Opt Spectrosc 1986; 60(6): 791-793.
  26. Aleksandrina SA, Kuleshov AM. Effect of rejection of low spatial frequencies of the spectrum on the signal parameters in a holographic correlator. Opt Spectrosc 1990; 68(3): 381-383.
  27. Pavlov AV. On the applicability of the linear regression model for describing Fourier holography. Opt Spectrosc 2005; 98(6): 949-953.
  28. Yaglom AM. Correlation theory of stationary random functions [In Russian]. Leningrad: "Gidrometeoizdat" Publisher; 1981.
  29. Doskolovich LL, Bezus EA, Bykov DA, Golovastikov NA, Soifer VA. Resonant properties of composite structures consisting of several resonant diffraction gratings. Opt Express 2019; 27(18): 25814-25828. DOI: 10.1364/OE.27.025814.
  30. Butt MA, Khonina SN, Kazanskiy NL. A serially cascaded micro-ring resonator for simultaneous detection of multiple analytes. Laser Phys 2019; 29(4): 046208. DOI: 10.1088/1555-6611/ab0371.
  31. Bezus EA, Doskolovich LD, Bykov DA, Soifer VA. Spatial integration and differentiation of optical beams in a slab waveguide by a dielectric ridge supporting high-Q resonances. Opt Express 2018; 26(19): 25814-25828. DOI: 10.1364/OE.26.025156.
  32. Baizabal-Carvallo JF, Hallett M, Jankovic J. Pathogenesis and pathophysiology of functional (psychogenic) movement disorders. Neurobiol Dis 2019; 127: 32-44. DOI: 10.1016/j.nbd.2019.02.013.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20