(44-5) 09 * << * >> * Russian * English * Content * All Issues

Approaches to moving object detection and parameter estimation in a video sequence for the transport analysis system
B.A. Alpatov 1, P.V. Babayan 1, M.D. Ershov 1

Ryazan State Radio Engineering University named after V.F. Utkin, 390005, Ryazan, Russia, Gagarina 59

 PDF, 1212 kB

DOI: 10.18287/2412-6179-CO-701

Pages: 746-756.

Full text of article: Russian language.

Abstract:
The paper discusses different approaches to image and video processing aiming to solve the problems of detecting, tracking and estimating the parameters of moving objects. The developed algorithms for solving these problems are described in relation to the field of transport analytics. When developing the algorithms, attention was given to solving the problems on an embedded platform of video surveillance cameras, which imposes restrictions on the computational complexity. The first (basic) algorithm for moving object detection and parameter estimation is based on processing two associated areas of an image. This algorithm includes a computationally efficient adaptive procedure for evaluating and updating the background component of an image. The procedure is based on the physics of the process of movement of the object of interest through a processing zone. The second algorithm performs object tracking based on an optical flow method initialized by feature points. The third algorithm is based on object segment tracking and is computationally efficient for the implementation on an embedded platform of intelligent cameras. Results of experimental studies of the proposed algorithms are presented, as well as a comparison with some well-known algorithms. It is shown that tracking algorithms can improve the accuracy of moving object parameter estimation. Tracking also reduces the number of classification errors compared to the basic approach to object detection and parameter estimation.

Keywords:
object detection, tracking, parameter estimation, image processing, video sequence analysis, transport analytics.

Citation:
Alpatov BA, Babayan PV, Ershov MD. Approaches to moving object detection and parameter estimation in video sequence for transport analysis system. Computer Optics 2020; 44(5): 746-756. DOI: 10.18287/2412-6179-CO-701.

Acknowledgements:
This work was supported by a scholarship of the President of the Russian Federation for young scientists and postgraduate students (SP-2578.2018.5).

References:

  1. The future of road transport: implications of automated, connected, low-carbon and shared mobility. Joint Research Centre. Luxembourg: Publications Office of the EU; 2019. ISBN: 978-92-76-14319-2.
  2. Husain AA, Maity T, Yadav RK. Vehicle detection in intelligent transport system under a hazy environment: a survey. IET Image Processing 2020; 14(1): 1-10. DOI: 10.1049/iet-ipr.2018.5351.
  3. Deshpande SD, Er MH, Ronda V, Chan P. Max-mean and max-median filters for detection of small-targets. Proc SPIE 1999; 3809: 74-83. DOI: 10.1117/12.364049.
  4. Vaniev AA, Emelyanov GM. Method of detection of fast-moving objects when using the digital optical locator of tracking type [In Russian]. Computer Optics 2013; 37(4): 477-483.
  5. Kopenkov VN, Myasnikov VV. The estimation of the traffic flow parameters based on the videoregistration data analysis [In Russian]. Computer Optics 2014; 38(1): 81-86.
  6. Subburaman VB, Descamps A, Carincotte C. Counting people in the crowd using a generic head detector. 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance 2012; 470-475. DOI: 10.1109/AVSS.2012.87.
  7. Kirchner N, Alempijevic A, Virgona A, Dai X, Ploger PG, Venkat RV. A robust people detection, tracking, and counting system. Proc Australasian Conference on Robotics and Automation 2014; 8 p.
  8. Han S, Han Y, Hahn H. Vehicle detection method using Haar-like feature on real time system. Int J Electr Comput Eng 2009; 3(11): 1957-1961.
  9. Wang H, Zhang H. A hybrid method of vehicle detection based on computer vision for intelligent transportation system. Int J Multimedia Ubiquitous Eng 2014; 9(6): 105-118. DOI: 10.14257/ijmue.2014.9.6.11.
  10. Nandashri D, Smitha P. An efficient tracking of multi object visual motion using Hungarian method. Int J Eng Res Technol 2015; 4: 1307-1310. DOI: 10.17577/ijertv4is041410.
  11. Andriluka M, Roth S, Schiele B. People-tracking-by-detection and people-detection-by-tracking. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2008. DOI: 10.1109/CVPR.2008.4587583.
  12. Dehghan A., Idrees H., Zamir A.R., Shah M. Automatic detection and tracking of pedestrians in videos with various crowd densities. In Book: Weidmann U, Kirsch U, Schreckenberg M, eds. Pedestrian and evacuation dynamics. Cham: Springer; 2012: 3-19. DOI: 10.1007/978-3-319-02447-9_1.
  13. Alpatov BA, Babayan PV. Moving object extraction in image with geometric distortion [In Russian]. Digit Signal Process 2004; 4: 9-14.
  14. Trifonov AP, Kutsov RV. Detecting an object moving at an arbitrary velocity with unknown image and background intensities [In Russian]. Avtometriya 2006; 4: 3-16.
  15. Bouwmans T. Traditional and recent approaches in background modeling for foreground detection: an overview. Comput Sci Rev 2014; 11-12: 31-66. DOI: 10.1016/j.cosrev.2014.04.001.
  16. Alpatov BA, Babayan PV, Ershov MD. Vehicle detection and counting system for real-time traffic surveillance. 2018 7th Mediterranean Conference on Embedded Computing (MECO) 2018; 120-123. DOI: 10.1109/MECO.2018.8406017.
  17. Rublee E, Rabaud V, Konolige K, Bradski GR. ORB: An efficient alternative to SIFT or SURF. Int Conf Comput Vis 2011; 2564-2571. DOI: 10.1109/ICCV.2011.6126544.
  18. Babayan PV, Buiko SA, Vdovkin LA, Ershov MD, Muraviev VS, Sirenko AV, Smirnov SA. Real-time pyramidal Lukas-Kanade tracker performance estimation. Proc SPIE 2019; 10996: 10996OL. DOI: 10.1117/12.2519274.
  19. Guerrero-Gomez-Olmedo R, Lopez-Sastre RJ, Maldonado-Bascon S, Fernandez-Caballero A. Vehicle tracking by simultaneous detection and viewpoint estimation. In Book: Ferrández Vicente JM, Álvarez Sánchez JR, de la Paz López F, Toledo Moreo FJ, eds. Natural and artificial computation in engineering and medical applications. IWINAC 2013. Berlin, Heidelberg: Springer; 2013: 306-316. DOI: 10.1007/978-3-642-38622-0_32.
  20. Wang Y, Jodoin P-M, Porikli F, Konrad J, Benezeth Y, Ishwar P. CDnet 2014: an expanded change detection benchmark dataset. 2014 IEEE Conf Comput Vis Pattern Recogn Workshop 2014; 393-400. DOI: 10.1109/CVPRW.2014.126.
  21. Yang H, Qu S. Real-time vehicle detection and counting in complex traffic scenes using background subtraction model with low-rank decomposition. IET Intell Transp Syst 2018; 12(1): 75-85. DOI: 10.1049/iet-its.2017.0047.
  22. Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 1999; 2: 246-252. DOI: 10.1109/CVPR.1999.784637.
  23. Zhou T, Tao D. GoDec: Randomized low-rank and sparse matrix decomposition in noisy case. Proc 28th Int Conf Machine Learn 2011; 33-40.
  24. Zhou X, Yang C, Yu W. Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans Pattern Anal Mach Intell 2013; 35(3): 597-610. DOI: 10.1109/TPAMI.2012.132.
  25. Shakeri M, Zhang H. COROLA: A sequential solution to moving object detection using low-rank approximation. Comput Vis Image Underst 2016; 146: 27-39. DOI: 10.1016/j.cviu.2016.02.009.
  26. Rodriguez P, Wohlberg B. Incremental principal component pursuit for video background modeling. J Math Imaging Vis 2016; 55: 1-18. DOI: 10.1007/s10851-015-0610-z.
  27. Quesada J, Rodriguez P. Automatic vehicle counting method based on principal component pursuit background modeling. 2016 IEEE Int Conf Image Proces (ICIP) 2016; 3822-3826. DOI: 10.1109/ICIP.2016.7533075.
  28. Bouvie C, Scharcanski J, Barcellos P. Tracking and counting vehicles in traffic video sequences using particle filtering. 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) 2013; 812-815. DOI: 10.1109/I2MTC.2013.6555527.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20