(44-5) 20 * << * >> * Russian * English * Content * All Issues

A method of wavefront distortions correction for an atmospheric optical link with a small volume of information transmitted through a service channel
A.A. Nevzorov 1, D.A. Stankevich 1

Volgograd State University
400062, Volgograd, Russia, prospekt Universitetskiy, 100

 PDF, 1068 kB

DOI: 10.18287/2412-6179-CO-733

Pages: 848-851.

Full text of article: Russian language.

Abstract:
The paper describes a method of wavefront distortion correction in a turbulent atmosphere, which allows reducing the volume of information transmitted through a service channel. The correction is carried out with a transparency whose phase mask is calculated by a simple three-layer neural network by intensity distribution obtained at the photoreceiver. The architecture of the network is constructed so that the amount of data transferred over the service channel is reduced to 30 parameters, using which a corrective mask is then constructed.

Keywords:
atmospheric optical communications, neural network, turbulence.

Citation:
Nevzorov AA, Stankevich DA. A method of wavefront distortions correction for an atmospheric optical link with a small volume of information transmitted through a service channel. Computer Optics 2020; 44(5): 848-851. DOI: 10.18287/2412-6179-CO-733.

Acknowledgements:
This work was financially supported by the Russian Science Foundation, project no. 18-79-00080.

References:

  1. Wang J, Yang J, Fazal IM, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner AE. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photon 2012; 6: 355-359. DOI: 10.1038/NPHOTON.2012.138.
  2. Gibson G, Courtial J, Padgett MJ, Vasnetsov M, Pas’ko V, Barnett SM, Franke-Arnold S. Free-space information transfer using light beams carrying orbital anguar momentum. Opt Express 2004; 12: 5448-5456. DOI: 10.1364/OPEX.12.005448.
  3. Celechovsky R, Bouchal Z. Optical implementation of the vortex information channel. New J Phys 2007; 9(9): 328. DOI: 10.1088/1367-2630/9/9/328.
  4. Mehul M, O’Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery MPJ, Padgett MJ, Boyd RW. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt Express 2012; 20(12): 13195-13200. DOI: 10.1364/OE.20.013195.
  5. Soifer VA, Korotkova O, Khonina SN, Shchepakina EA. Vortex beams in turbulent media: review. Computer Optics 2016; 40(5): 605-624. DOI: 10.18287/2412-6179-2016-40-5-605-624.
  6. Ren Y, Xie G, Huang H, Ahmed N, Yan Y, Li L, Bao C, Lavery M, Tur M, Neifeld M, Boyd RW, Shapiro JH, Willner AE. Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link. Optica 2014; 1(6): 376-382 DOI: 10.1364/OPTICA.1.000376.
  7. Lukin VP. Adaptive optics in the formation of optical beams and images. Physics–Uspekhi 2014; 57: 556-592. DOI: 10.3367/UFNe.0184.201406b.0599.
  8. Huanga Z, Wanga P, Liub J, Xionga W, Hea Y. Identification of hybrid orbital angular momentum modes with deep feedforward neural network. Results Phys 2019; 15: 102790. DOI: 10.1016/j.rinp.2019.102790.
  9. Wang Z, Dedo MI, Guo K, Zhou K, Shen F, Sun Y, Liu S, Guo Z. Efficient recognition of the propagated orbital angular momentum modes in turbulences with the convolutional neural network. IEEE Photon J 2019; 11(3): 2916207. DOI: 10.1109/JPHOT.2019.2916207.
  10. Lohani S, Glasser RT. Turbulence correction with artificial neural networks. Opt Lett 2018; 43: 2611-2614. DOI: 10.1364/OL.43.00261.
  11. Liu J, Wang P, Zhang X, He Y, Zhou X, Ye H, Li Y, Xu S, Chen S, Fan D. Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication. Opt Express 2019; 27(12): 16671-16688. DOI: 10.1364/OE.27.016671.
  12. Andrews LC, Vester S, Richardson CE. Analytic expressions for the wave structure function based on a bump spectral model for refractive index fluctuations. J Mod Opt 1993; 40(5): 931-938. DOI: 10.1080/09500349314550931.
  13. Khonina SN, Karpeev SV, Paranin VD. A technique for simultaneous detection of individual vortex states of Laguerre–Gaussian beams transmitted through an aqueous suspension of microparticles. Opt Lasers Eng 2018; 105: 68-74. DOI: 10.1016/j.optlaseng.2018.01.006.
  14. Khonina SN, Artyukova AA, Kirilenko MS. Comparative study of impact of random environment on individual and combined Laguerre-Gauss modes. J Phys: Conf Ser 2018; 1038: 012070. DOI: 10.1088/1742-6596/1038/1/012070.
  15. Hou T, An Y, Chang Q, Ma P, Li J, Huang L, Zhi D, Wu J, Su R, Ma Y, Zhou P. Deep-learning-assisted, two-stage phase control method for high-power mode-programmable orbital angular momentum beam generation. Photon Res 2020; 8(5): 715-722. DOI: 10.1364/PRJ.388551.
  16. Lachinova SL, Vorontsov MA. Giant irradiance spikes in laser beam propagation in volume turbulence: analysis and impact. J Opt 2016; 18(2): 025608. DOI: 10.1088/2040-8978/18/2/025608.
  17. Nevzorov AA, Orlov AA, Stankevich DA. A neural network simulator of a nonstationary medium in an adaptive data transmission system. Tech Phys Lett 2019; 45(7): 694-696. DOI: 10.1134/S1063785019070241.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20