(45-3) 02 * << * >> * Russian * English * Content * All Issues

Transformation of a high-order edge dislocation to optical vortices (spiral dislocations)
V.V. Kotlyar 1,2, A.A. Kovalev 1,2, A.G. Nalimov 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1033 kB

DOI: 10.18287/2412-6179-CO-855

Pages: 319-323.

Full text of article: Russian language.

Abstract:
We theoretically show that an astigmatic transformation of an nth-order edge dislocation (a zero-intensity straight line) produces n optical elliptical vortices (spiral dislocations) with unit topological charge at the double focal distance from the cylindrical lens, located on a straight line perpendicular to the edge dislocation, at points whose coordinates are the roots of an nth-order Hermite polynomial. The orbital angular momentum of the edge dislocation is proportional to the order n.

Keywords:
astigmatic transformation, edge dislocation, spiral dislocation, optical vortex.

Citation:
Kotlyar VV, Kovalev AA, Nalimov AG. Transformation of a high-order edge dislocation to optical vortices (spiral dislocations). Computer Optics 2021; 45(3): 319-323. DOI: 10.18287/2412-6179-CO-855.

Acknowledgements:
The work was partly funded by the Russian Foundation for Basic Research under grant # 18-29-20003 (Section "Complex amplitude of field with edge dislocation on double focal distance"), the Russian Science Foundation under grant # 18-19-00595 (Section "Orbital angular momentum"), and by the RF Ministry of Science and Higher Education within a state contract with the "Crystallography and Photonics" Research Center of the RAS (Section "Numerical simulation").

References:

  1. Abramochkin EG, Volostnikov VG. Beam transformation and nontransformed beams. Opt Commun 1991; 83(1-2): 123-135. DOI: 10.1016/0030-4018(91)90534-K.
  2. Lu B, Wu P. Analytical propagation equation of astigmatic Hermite-Gaussian beams through a 4x4 paraxial optical systems and their symmetrizing transformation. Opt Laser Technol 2003; 35: 497-504.
  3. Chen YF, Chay CC, Lee CY, Tung JC, Liang HC, Huang KT. Characterizing the propagation evolution of wave patterns and vortex structures in astigmatic transformations of Hermite-Gaussian beams. Laser Phys 2017; 28: 015002.
  4. Abramochkin EG, Razueva EU, Volostnikov VG. Hermite-Laguerre-Gaussian beams in astigmatic optical systems. Proc SPIE 2008; 7009: 70090M. DOI: 10.1117/12.793382.
  5. Bekshaev AY, Soskin MS, Vasnetsov MV. Transformation of higher-order optical vortices upon focusing by an astigmatic lens. Opt Commun 2004; 241: 237-247.
  6. Bekshaev AY, Karamoch AI. Astigmatic telescopic transformation of a high-order optical vortex. Opt Commun 2008; 281: 5687-5696.
  7. Zhu K, Zhu J, Su Q, Tang H. Propagation properties of an astigmatic sin-Gaussian beam in a strongly nonlocal nonlinear media. Appl Sci 2019; 9(1): 71.
  8. Huang TD, Lu TH. Large astigmatic laser cavity modes and astigmatic compensation. Appl Phys B 2018; 124: 72.
  9. Pan J, Shen Y, Wan Z, Fu X, Zhang H, Liu Q. Index-tunable structured-light beams from a laser with a intracavity astigmatic mode converter. Phys Rev Appl 2020; 14: 044048.
  10. Kotlyar VV, Kovalev AA, Porfirev AP, Kozlova ES.  Three different types of astigmatic Hermite-Gaussian beams with orbital angular momentum. J Opt 2019; 21(11): 115601. DOI: 10.1088/2040-8986/ab42b5.
  11. Kotlyar VV, Kovalev AA, Porfirev AP. Vortex astigmatic Fourier-invariant Gaussian beams. Opt Express 2019; 27(2): 657-666. DOI: 10.1364/OE.27.000657.
  12. Kotlyar VV, Kovalev AA, Porfirev AP. Elliptic Gaussian optical vortices. Phys Rev A 2017; 95(5): 053805. DOI: 10.1103/PhysRevA.95.053805.
  13. Kotlyar VV, Kovalev AA, Porfirev AP. Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl Opt 2017; 56(14): 4095-4104. DOI: 10.1364/AO.56.004095.
  14. Kotlyar VV, Kovalev AA, Porfirev AP. Vortex Hermite-Gaussian laser beams. Opt Lett 2015; 40(5): 701-704. DOI: 10.1364/OL.40.000701.
  15. Bazhenov VY, Soskin MS, Vasnetsov MV. Screw dislocations in light wavefronts. J Mod Opt 1992; 39(5): 985-990.
  16. Basistiy IV, Soskin MS, Vasnetsov MV. Optical wavefront dislocations and their properties. Opt Commun 1995; 119(5-6): 604-612.
  17. Petrov DV. Vortex-edge dislocation interaction in a linear medium. Opt Commun 2001; 188: 307-312.
  18. Petrov DV. Splitting of an edge dislocation by an optical vortex. Opt Quantum Electron 2002; 34: 759-773.
  19. He D, Yan H, Lu B. Interaction of the vortex and edge dislocation embedded in a cosh-Gaussian beam. Opt Commun 2009; 282: 4035-4044.
  20. Chen H, Wang W, Gao Z, Li W. Splitting of an edge dislocation by a vortex emergent from a nonparaxial beam. J Opt Soc Am B 2019; 36: 2804-2809.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20