(45-3) 04 * << * >> * Russian * English * Content * All Issues

Numerical analysis of the functional properties of the 3D resonator of a plasmon nanolaser with regard to nonlocality and prism presence via the Discrete Sources method
Y.A. Eremin 1, V.V. Lopushenko 1

Lomonosov Moscow State University, 119991, Moscow, Russia, Leninskie Gory 1, bld 52

 PDF, 2231 kB

DOI: 10.18287/2412-6179-CO-790

Pages: 331-339.

Full text of article: Russian language.

Abstract:
The influence of the nonlocality effect on the optical characteristics of the near field of a plasmonic nanolaser resonator is considered. A computer model based on the Discrete Sources method has been developed for the analysis of the near-field characteristics of a layered nanoparticle located on a transparent substrate in an active medium. In this case, the nonlocality of the plasmon metal is taken into account within the framework of a Generalized Nonlocal Optical Response model. Excitation of a particle by both propagating and evanescent waves is investigated. "Optimal" directions of external excitation have been established. It is found that excitation by an evanescent wave leads to a higher intensity of the near field. It is demonstrated that accounting for the nonlocal effect in the plasmonic metal significantly reduces the field amplification factor.

Keywords:
plasmonic nanolaser, spaser, nonlocal effect, the discrete sources method.

Citation:
Eremin YA, Lopushenko VV. Numerical analysis of the functional properties of the 3D resonator of a plasmon nanolaser with regard to nonlocality and prism presence via the Discrete Sources method. Computer Optics 2021; 45(3): 331-339. DOI: 10.18287/2412-6179-CO-790.

Acknowledgements:
This work was financially supported by the Moscow Center for Fundamental and Applied Mathematics (project: "Modeling of the Plasmonic Nanolaser Elements Accounting for Quantum Nonlocality").

References:

  1. Klimov VV. Nanoplasmonics. Singapore: Pan Stanford Publishing Pte Ltd; 2014. ISBN: 978-981-4267-16-8.
  2. Barbillon G. Plasmonics and its applications. Materials 2019; 12: 1502. DOI: 10.3390/ma12091502.
  3. Xu D, Xiong X, Wu L, et al. Quantum plasmonics: new opportunity in fundamental and applied photonics. Review. Adv Opt Photonics 2018; 10(4): 703-756. DOI: 10.1364/AOP.10.000703.
  4. Stockman M, Bozhevolnyi SI, et al. Roadmap on plasmonics. J Opt 2018; 20: 04300. DOI: 10.1088/2040-8986/aaa114.
  5. Kalambate PK, Dhanjai, Huang Z, et al. Core@shell nanomaterials based sensing devices: A review. Trends Analyt Chem 2019; 115: 147-161. DOI: 10.1016/j.trac.2019.04.002.
  6. Izadiyana Z, Shamelia K, Miyakea M, et al. Green fabrication of biologically active magnetic core-shell Fe3O4/Au nanoparticles and their potential anticancer effect. Materials Sci Eng C 2019; 96: 51-57. DOI: 10.1016/j.msec.2018.11.008.
  7. Xu L, Li F, Liu Y, Yao F, Liu S. Surface plasmon nanolaser: Principle, structure, characteristics and applications. Appl Sci 2019; 9(5): 861. DOI: 10.3390/app9050861.
  8. Solowan H-P, Kryschi C. Facile design of a plasmonic nanolaser. Condens Matt 2017; 2(1): 8. DOI: 10.3390/condmat2010008.
  9. Sudarkin AN, Demkovich PA. Excitation of surface electromagnetic wave on the boundary of a metal with an amplified medium. Sov Phys Tech Phys 1988; 34: 764.
  10. Bergman DJ, Stockman MI. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett 2003; 90: 027402. DOI: 10.1103/PhysRevLett.90.027402.
  11. Protsenko IE, Uskov AV, Zaimidoroga A, Samoilov VN, O’Reilly EP. Dipole nanolaser. Phys Rev A 2005; 71: 063812. DOI: 10.1103/PhysRevA.71.063812.
  12. Noginov MA, Zhu G, Belgrave AM, et al. Demonstration of spaser-based nanolaser. Nature 2009; 460: 1110. DOI: 10.1038/nature08318.
  13. Zabolotskii AA, Kuch’yanov AS, Benimetskii FA, Plekhanov AI. Соllective fluorescence of composite nanoparticles. J Exp Theor Phys 2018; 126: 174-182. DOI: 10.1134/S1063776118020097.
  14. Balykin VI. Plasmon nanolaser: current state and prospects. Phys Usp 2018; 61(9): 846-870. DOI: 10.3367/UFNe.2017.09.038206.
  15. Jackson JD.. Classical electrodynamics. 3rd ed. New York: John Wiley; 1999. ISBN: 0-471-30932-X.
  16. Garcia de Abajo FJ. Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J Phys Chem C 2008; 112: 17983-17987. DOI: 10.1021/jp807345h.
  17. Raza S, Bozhevolnyi SI, Wubs M, Mortensen NA. Nonlocal optical response in metallic nanostructures. Topical Review. J Phys Condens Matter 2015; 27: 183204. DOI: 10.1088/0953-8984/27/18/183204.
  18. Eremin YuA, Sveshnikov AG. Mathematical models in nanooptics and biophotonics based on the discrete sources method. Comp Math Math Phys 2007; 47(2): 262-269. DOI: 10.1134/S0965542507020108.
  19. Doicu A, Eremin Yu, Wriedt T. Acoustic and electromagnetic scattering analysis using discrete sources. San Diego: Academic Press; 2000. ISBN: 0-12-219740-2.
  20. Baryshev AV, Eremin YuA. Analyzing the scattering of light by a cluster of nanoparticles in thin metal film with discrete sources method [In Russian]. Computer Optics 2011; 35(3): 311-319.
  21. Eremin YuA, Sveshnikov AG. Mathematical model taking into account nonlocal effects of plasmonic structures on the basis of the discrete source method. Comp Math Math Phys 2018; 58(4): 572-580. DOI: 10.1134/S0965542518040103.
  22. Eremin Yu, Doicu A, Wriedt T. Discrete sources method for modeling the nonlocal optical response of a nonspherical particle dimer. J Quantitat Spectr Radiat Transfer 2018; 217: 35-44. DOI: 10.1016/j.jqsrt.2018.05.026.
  23. Eremin Yu, Doicu A, Wriedt T. A numerical method for analyzing the near field enhancement of non-spherical dielectric-core metallic-shell particles accounting for the non-local dispersion. J Opt Soc Am A 2020; 37(7): 1135-1142. DOI: 10.1364/JOSAA.392537.
  24. Eremin YuA, Sveshnikov AG. Method for analyzing the influence of the quantum nonlocal effect on the characteristics of a plasmonic nanolaser. Doklady Mathematics 2020; 101(1): 20-24. DOI: 10.1134/S1064562420010135.
  25. Born M, Wolf E. Principles of Optics. Electromagnetic theory of propagation, interference and diffraction of light. 7th ed. Cambridge: Cambridge University Press; 1999. ISBN: 0-521-64222-1.
  26. Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B 1972; 6: 4370. DOI: 10.1103/PhysRevB.6.4370.
  27. Liaw J-W, Chen H-C, Kuo M-K. Comparison of Au and Ag nanoshells' metal-enhanced fluorescence. J Quantitat Spectr Radiat Trans 2014; 146: 321-330. DOI: 10.1016/j.jqsrt.2014.02.025.
  28. Kupresak M, Zheng X, Vandenbosch GAE, Moshchalkov VV. Comparison of hydrodynamic models for the electromagnetic nonlocal response of nanoparticles. Adv Theory Simul 2018; 1(12): 1800076. DOI: 10.1002/adts.201800076.
  29. Avşar D, Ertürk H, Mengüç MP. Plasmonic responses of metallic/dielectric core-shell nanoparticles on a dielectric substrate. Mater Res Express 2019; 6: 065006. DOI: 10.1088/2053-1591/ab07fd.
  30. Tserkezis Ch, Yan W, Hsieh W, Sun G, Khurgin JB, Wubs M, Mortensen MA. On the origin of nonlocal damping in plasmonic monomers and dimers. Int J Mod Phys B 2017; 31: 1740005. DOI: 10.1142/S0217979217400057.
  31. Maack JR, Mortensen NA, Wubs M. Size-dependent nonlocal effects in plasmonic semiconductor particles. Europhysics Letters 2017; 119(1): 17003. DOI: 10.1209/0295-5075/119/17003.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20