(45-4) ED * << * >> * Russian * English * Content * All Issues

Editorial: The hundredth issue of the journal Computer Optics

 PDF, 808 kB

DOI: 10.18287/2412-6179-CO-1000

Pages: 475-481.

Full text of article: Russian language.

Citation:
Editorial: The hundredth issue of the journal Computer Optics. Computer Optics 2021; 45(4): 475-481. DOI: 10.18287/2412-6179-CO-1000.

References:

  1. Sisakyan IN, Soifer VА. Computer optics: achievements and problems. Computer Optics 1989; 1(1): 3-12.
  2. Danilov VA, Kinber ВЕ, Shishlov AV. Theory of coherent focusers. Computer Optics 1989; 1(1): 29-37.
  3. Vorontsov MA, Matveev AN, Sivokon' VP. On the design of laser radiation focusers within the diffrac­tion approximation. Computer Optics 1989; 1(1): 57-60.
  4. Kazanskii NL. Correction of focuser phase function by computer-experimental methods. Computer Optics 1989; 1(1): 69-73.
  5. Greisukh GI, Efimenko IM, Stepanov SA. Design principles for projection and focusing optical systems with diffraction elements. Computer Optics 1989; 1(1): 89-90.
  6. Popov VV. Materials and methods for flat optical elements. Computer Optics 1989; 1(1): 125-127.
  7. Sisakian IN, Shorin VP, Soifer VА, Mordasov VI, Popov VV. Technological capabilities of focusators in laser-induced material processing. Computer Optics 1990; 2(1): 85-87.
  8. Aristov VV, Babin SV, Erko AI. Microelectronic technology for computer optics. Computer Optics 1990; 2(2): 157-160.
  9. Golub MA, Kazanskii NL, Sisakyan IN, Soifer VA. Reference wavefront shaping using diffractive optical elements [In Russian]. Computer Optics 1990; 7: 3-26.
  10. Golub MA, Sisakyan IN, Soifer VA. Modans – new elements of computer optics [In Russian]. Computer Optics 1990; 8: 3-64.
  11. Golub MA, Kazanskii NL, Prokhorov AM, Sisakyan IN, Soifer VA. Synthesis of optical antennae. Computer Optics 1989; 1(1): 25-28.
  12. Gan MA, Bogatyreva II. Kinoform optical elements in optical system design over a wide spectral range. Computer Optics 1989; 1(1): 51-55.
  13. Minin OV, Minin IV. Paraboloidal zone plates: an experimental study. Computer Optics 1990; 2(1): 5-9.
  14. Petrov NI, Sisakyan IN, Sisoyev VS. Computer-synthesized optical elements in diagnosis of aerosol systems. Computer Optics 1990; 2(1): 89-90.
  15. Bobrov ST, Turkevich YuG. Multiple-order diffraction gratings with asymmetric periodic profile. Computer Optics 1990; 2(2): 109-113.
  16. Palchikova IG. Kinoform optical elements with increased depth of focus [In Russian]. Computer Optics 1989; 6: 9-19.
  17. Gallagher NC, Sweeney DW. Computer generated microwave kinoform. Computer Optics 1990; 8: 65-74.
  18. Balashov AA, Vagin VA, Zhizhin GN. Modern Fourier spectrometers—a new branch of computerized optical instrumentation. Computer Optics 1990; 2(2): 173-180.
  19. Balashov AA, Vagin VA. Development of Fourier spectrometers in the Soviet Union. Computer Optics 1990; 2(2): 181-190.
  20. Sergeyev VV, Usachev AV. Numerical simulation of two-dimensional linear systems. Computer Optics 1990; 2(1): 23-28.
  21. Thaller R, Dimitrov L, Wenger E. 3D-Reconstraction of the Human Brain. Computer Optics 1991; 9: 18-35.
  22. Sergeyev VV. Parallel-recursive FIR filters for image processing [In Russian]. Computer Optics 1992; 10-11: 186-201.
  23. Vasilyiev KK, Krasheninnikov VR. Adaptive algorithms for detecting anomalies on a sequence of multidimensional images [In Russian]. Computer Optics 1995; 14-15(1): 125-132.
  24. Soifer VA. Nanophotonics and diffractive optics. Computer Optics 2008; 32(2): 110-118.
  25. Soifer VA, Kotlyar VV, Doskolovich LL. Diffractive optical elements in nanophotonics devices. Computer Optics 2009; 33(4): 352-368.
  26. Nalimov AG, O'Faolain L, Stafeev SS, Shanina MI, Kotlyar VV. Reflected four-zones subwavelength microoptics element for polarization conversion from linear to radial. Computer Optics 2014; 38(2): 229-236. DOI: 10.18287/0134-2452-2014-38-2-229-236.
  27. Egorov AV, Kazanskiy NL, Serafimovich PG. The use of coupled photonic crystals cavities for increasing the sensor sensitivity. Computer Optics 2015; 39(2): 158-162. DOI: 10.18287/0134-2452-2015-39-2-158-162.
  28. Panyaev IS, Sannikov DG. Spectral properties of nonlinear surface polaritons of Mid-IR range in a "semiconductor–layered metamaterial" structure. Computer Optics 2017; 41(2): 183-191. DOI: 10.18287/2412-6179-2017-41-2-183-191.
  29. Kotlyar VV, Nalimov AG. A vector optical vortex generated and focused using a metalens. Computer Optics 2017; 41(5): 645-654. DOI: 10.18287/2412-6179-2017-41-5-645-654.
  30. Davidovich MV. Dyakonov plasmon-polaritones along a hyperbolic metamaterial surface. Computer Optics 2021; 45(1): 48-57. DOI: 10.18287/2412-6179-CO-673.
  31. Gashnikov MV, Glumov NI, Kuznetsov AV, Mitekin VA, Myasnikov VV, Sergeev VV. Hyperspectral remote sensing data compression and protection. Computer Optics 2016; 40(5): 689-712. DOI: 10.18287/2412-6179-2016-40-5-689-712.
  32. Kazanskiy NL, Protsenko VI, Serafimovich PG. Comparison of system performance for streaming data analysis in image processing tasks by sliding window. Computer Optics 2014; 38(4): 804-810. DOI: 10.18287/0134-2452-2014-38-4-804-810.
  33. Amosov OS, Ivanov YS, Zhiganov SV. Human localiztion in video frames using a growing neural gas algorithm and fuzzy inference. Computer Optics 2017; 41(1): 46-58. DOI: 10.18287/2412-6179-2017-41-1-46-58.
  34. Chen H, Ye S, Nedzvedz A, Nedzvedz O, Lv H, Ablameyko S. Traffic extreme situations detection in video sequences based on integral optical flow. Computer Optics 2019; 43(4): 647-652. DOI: 10.18287/2412-6179-2019-43-4-647-652.
  35. Arlazarov VV, Bulatov K, Chernov T, Arlazarov VL. MIDV-500: a dataset for identity document analysis and recognition on mobile devices in video stream. Computer Optics 2019, 43(5): 818-824. DOI: 10.18287/2412-6179-2019-43-5-818-824.
  36. Bohush RP, Zakharava IY. Person tracking algorithm based on convolutional neural network for indoor video surveillance. Computer Optics 2020; 44(1): 109-116. DOI: 10.18287/2412-6179-CO-565.
  37. Evdokimova VV, Petrov MV, Klyueva MA, Zybin EY, Kosianchuk VV, Mishchenko IB, Novikov VM, Selvesiuk NI, Ershov EI, Ivliev NA, Skidanov RV, Kazanskiy NL, Nikonorov AV. Deep learning-based video stream reconstruction in mass production diffractive optical systems. Computer Optics 2021; 45(1): 130-141. DOI: 10.18287/2412-6179-CO-834.
  38. Petrova O, Bulatov K, Arlazarov VV, Arlazarov VL. Weighted combination of per-frame recognition results for text recognition in a video stream. Computer Optics 2021, 45(1): 77-89. DOI: 10.18287/2412-6179-CO-795.
  39. Kazanskiy NL, Kharitonov SI, Khonina SN, Volotovskiy SG, Strelkov YuS. Simulation of hyperspectrometer on spectral linear variable filters. Computer Optics 2014; 38(2): 256-270. DOI: 10.18287/0134-2452-2014-38-2-256-270.
  40. Kazanskiy NL, Kharitonov SI, Karsakov AV, Khonina SN. Modeling action of a hyperspectrometer based on the Offner scheme within geometric optics. Computer Optics 2014; 38(2): 271-280. DOI: 10.18287/0134-2452-2014-38-2-271-280.
  41. Kazanskiy NL, Kharitonov SI, Doskolovich LL, Pavelyev AV. Modeling the performance of a spaceborne hyperspectrometer based on the Offner scheme. Computer Optics 2015; 39(1): 70-76. DOI: 10.18287/0134-2452-2015-39-1-70-76.
  42. Mai HH, Le TTh. Testing edible oil authenticity by using smartphone based spectrometer. Computer Optics 2020; 44(2): 189-194. DOI: 10.18287/2412-6179-CO-604.
  43. Fursov VA, Bibikov SA, Bajda OA. Thematic classification of hyperspectral images using conjugacy indicator. Computer Optics 2014; 38(1): 154-160. DOI: 10.18287/0134-2452-2014-38-1-154-158.
  44. Denisova AYu, Myasnikov VV. Anomaly detection for hyperspectral imaginary. Computer Optics 2014; 38(2): 287-296. DOI: 10.18287/0134-2452-2014-38-2-287-296.
  45. Zimichev EA, Kazanskiy NL, Serafimovich PG. Spectral-spatial classification with k-means++ particional clustering. Computer Optics 2014; 38(2): 281-286. DOI: 10.18287/0134-2452-2014-38-2-281-286.
  46. Kuznetsov AV, Myasnikov VV. A comparison of algorithms for supervised classification using hyperspectral data. Computer Optics 2014; 38(3): 494-502. DOI: 10.18287/0134-2452-2014-38-3-494-502.
  47. Myasnikov EV. Hyperspectral image segmentation using dimensionality reduction and classical segmentation approaches. Computer Optics 2017; 41(4): 564-572. DOI: 10.18287/2412-6179-2017-41-4-564-572.
  48. Bibikov SA, Kazanskiy NL, Fursov VA. Vegetation type recognition in hyperspectral images using a conjugacy indicator. Computer Optics 2018; 42(5): 846-854. DOI: 10.18287/2412-6179-2018-42-5-846-854.
  49. Podlipnov VV, Shchedrin VN, Babichev AN, Vasilyev SM, Blank VA. Experimental determination of soil moisture on hyperspectral images. Computer Optics 2018; 42(5): 877-884. DOI: 10.18287/2412-6179-2017-42-5-877-884.
  50. Borzov SM, Guryanov MA, Potaturkin OI. Study of the classification efficiency of difficult-to-distinguish vegetation types using hyperspectral data. Computer Optics 2019; 43(3): 464-473. DOI: 10.18287/2412-6179-2019-43-3-464-473.
  51. Ilyasova NYu. Methods for digital analysis of human vascular system. Literature review. Computer Optics 2013; 37(4): 511-535. DOI: 10.18287/0134-2452-2013-37-4-511-535.
  52. Ilyasova NYu, Kupriyanov AV, Paringer RA. Formation features for improving the quality of medical diagnosis based on discriminant analysis methods. Computer Optics 2014; 38(4): 851-855. DOI: 10.18287/0134-2452-2014-38-4-851-855.
  53. Smelkina NA, Kosarev RN, Nikonorov AV, Bairikov IM, Ryabov KN, Avdeev AV, Kazanskiy NL. Reconstruction of anatomical structures using statistical shape modeling. Computer Optics 2017; 41(6): 897-904. DOI: 10.18287/2412-6179-2017-41-6-897-904.
  54. Shirokanev AS, Kirsh DV, Ilyasova NYu, Kupriyanov AV. Investigation of algorithms for coagulate arrangement in fundus images. Computer Optics 2018; 42(4): 712-721. DOI: 10.18287/2412-6179-2018-42-4-712-721.
  55. Agafonova YuD, Gaidel AV, Zelter PM, Kapishnikov AV. Efficiency of machine learning algorithms and convolutional neural network for detection of pathological changes in MR images of the brain. Computer Optics 2020; 44(2): 266-273. DOI: 10.18287/2412-6179-CO-671.
  56. Soifer VА, Kurpiyanov АV. Analysis and recognition of the nanoscale images: Conventional approach and novel problem statement. Computer Optics 2011; 35(2): 136-144.
  57. Kazanskiy NL, Popov SB. The distributed vision system of the registration of the railway train. Computer Optics 2012; 36(3): 419-428.
  58. Kazanskii NL, Khonina SN, Skidanov RV, Morozov AA, Kharitonov SI, Volotovskiy SG. Formation of images using multilevel diffractive lens. Computer Optics 2014; 38(3): 425-434. DOI: 10.18287/0134-2452-2014-38-3-425-434.
  59. Evtikhiev NN, Kozlov AV, Krasnov VV, Rodin VG, Starikov RS, Cheremkhin PA. A method for measuring digital camera noise by automatic segmentation of a striped target. Computer Optics 2021; 45(2): 267-276. DOI: 10.18287/2412-6179-CO-815.
  60. Kulchin YN, Notkin BS, Sedov VA. Neuro-iterative algorithm of tomographic reconstruction of the distributed physical fields in the fibre-optic measuring systems. Computer Optics 2009; 33(4): 446-455.
  61. Nikonorov AV, Petrov MV, Bibikov SA, Kutikova VV, Morozov AA, Kazanskiy NL. Image restoration in diffractive optical systems using deep learning and deconvolution. Computer Optics 2017; 41(6): 875-887. DOI: 10.18287/2412-6179-2017-41-6-875-887.
  62. Rycarev IA, Kirsh DV, Kupriyanov AV. Clustering of media content from social networks using bigdata technology. Computer Optics 2018; 42(5): 921-927. DOI: 10.18287/2412-6179-2018-42-5-921-927.
  63. Vizilter YuV, Gorbatsevich VS, Zheltov SY. Structure-functional analysis and synthesis of deep convolutional neural networks. Computer Optics 2019; 43(5): 886-900. DOI: 10.18287/2412-6179-2019-43-5-886-900.
  64. Koronkevich VP, Poleshuk AlG, Sedukhin AnG, Lenkova GAl. Laser interferometric and diffractive systems. Computer Optics 2010; 34(1): 4-23.
  65. Soifer VA, Korotkova О, Khonina SN, Shchepakina ЕА. Vortex beams in turbulent media: review. Computer Optics 2016; 40(5): 605-624. DOI: 10.18287/2412-6179-2016-40-5-605-624.
  66. Butt MA, Khonina SN, Kazanskiy NL. Optical elements based on silicon photonics. Computer Optics 2019; 43(6): 1079-1083. DOI: 10.18287/2412-6179-2019-43-6-1079-1083.
  67. Evsutin OO, Kokurina AS, Meshcheryakov RV. A review of methods of embedding information in digital objects for security in the Internet of things. Computer Optics 2019; 43(1): 137-154. DOI: 10.18287/2412-6179-2019-43-1-137-154.
  68. Kazanskiy NL, Butt MA, Degtyarev SA, Khonina SN. Achievements in the development of plasmonic waveguide sensors for measuring the refractive index. Computer Optics 2020; 44(3): 295-318. DOI: 10.18287/2412-6179-CO-743.
  69. Kazanskiy NL, Murzin SP, Tregub VI. Optical system for realization selective laser sublimation of metal alloys components. Computer Optics 2010; 34(4): 481-486. DOI: 10.18287/0134-2452-2014-38-1-4-10.
  70. Kotlyar VV, Kovalev AA, Soifer VA. Diffraction-free asymmetric elegant Bessel beams with fractional orbital angular momentum. Computer Optics 2014: 38(1): 4-10.
  71. Murzin SP. Method of composite nanomaterials synthesis under metal/oxide pulse-periodic laser treatment. Computer Optics 2014; 38(3): 469-475. DOI: 10.18287/0134-2452-2014-38-3-469-475.
  72. Kazanskiy NL, Stepanenko IS, Khaimovich AI, Kravchenko SV, Byzov EV, Moiseev MA. Injectional multilens molding parameters optimization. Computer Optics 2016; 40(2): 203-214. DOI: 10.18287/2412-6179-2016-40-2-203-214.
  73. Agafonov AA, Myasnikov VV. Method for the reliable shortest path search in time-dependent stochastic networks and its application to GIS-based traffic control. Computer Optics 2016; 40(2): 275-283. DOI: 10.18287/2412-6179-2016-40-2-275-283.
  74. Plotnikov DE, Kolbudaev PA, Bartalev SA. Identification of dynamically homogeneous areas with time series segmentation of remote sensing data. Computer Optics 2018; 42(3): 447-456. DOI: 10.18287/2412-6179-2018-42-3-447-456.
  75. Volyar AV, Bretsko MV, Akimova YaE, Egorov YuA. Beyond the light intensity or intensity moments and measurements of the vortex spectrum in complex light beams. Computer Optics 2018; 42(5): 736-743. DOI: 10.18287/2412-6179-2017-42-5-736-743.
  76. Kropotov YA, Proskuryakov AY, Belov AA. Method for forecasting changes in time series parameters in digital information management systems. Computer Optics 2018; 42(6): 1093-1100. DOI: 10.18287/2412-6179-2018-42-6-1093-1100.
  77. Thanh DNH, Prasath VBS, Son NV, Hieu LM. An adaptive image inpainting method based on the modified Mumford-Shah model and multiscale parameter estimation. Computer Optics 2019; 43(2): 251-257. DOI: 10.18287/2412-6179-2019-43-2-251-257.
  78. Lebedev LI, Yasakov YuV, Utesheva TS, Gromov VP, Borusjak AV, Turlapov VE. Complex analysis and monitoring of the environment based on Earth sensing data. Computer Optics 2019; 43(2): 282-295. DOI: 10.18287/2412-6179-2019-43-2-282-295.
  79. Vasilyev VS, Kapustin AI, Skidanov RV, Podlipnov VV, Ivliev NA, Ganchevskaya SV. Experimental investigation of the stability of Bessel beams in the atmosphere. Computer Optics 2019; 43(3): 376-384. DOI: 10.18287/2412-6179-2019-43-3-376-384.
  80. Kuzmin MS, Davydov VV, Rogov SA. On the use of a multi-raster input of one-dimensional signals in two-dimensional optical correlators. Computer Optics 2019; 43(3): 391-396. DOI: 10.18287/2412-6179-2019-43-3-391-396.
  81. Morozov OG, Sakhabutdinov AJ. Addressed fiber Bragg structures in quasi-distributed microwave-photonic sensor systems. Computer Optics 2019; 43(4): 535-543. DOI: 10.18287/2412-6179-2019-43-4-535-543.
  82. Michaelsen E. On the automation of gestalt perception in remotely sensed data. Computer Optics 2018; 42(6): 1008-1014. DOI: 10.18287/2412-6179-2018-42-6-1008-1014.
  83. Stafeev SS. Indexing of Computer Optics in the Emerging Sources Citation Index database. Computer Optics 2017; 41(4): 592. DOI: 10.18287/2412-6179-2017-41-4-592.
  84. Kudryashov DV. Formation, development and features of English-language issues of the journal “Computer Optics”. J Phys Conf Ser 2018; 1096: 012148. DOI: 10.1088/1742-6596/1096/1/012148.
  85. Soifer VA. Quo vadis. Computer Optics 2014; 38(4): 589. DOI: 10.18287/0134-2452-2014-38-4-589.
  86. Velikhov ЕP. Foreword. Computer Optics 1989; 1(1): 1.
  87. Soifer VA. Diffractive nanophotonics and advanced information technologies. Herald of the Russian Academy of Sciences 2014; 84(1): 9-18. DOI: 10.1134/S1019331614010067.
  88. Sun C, Wade MT, Lee Y, Orcutt JS, Alloatti L. Single-chip microprocessor that communicates directly using light. Nature 2015; 528: 534-538.
  89. Aseev AL, Latyshev AV, Dvurechenskii AV. Semiconductor nanostructures for modern electronics. Solid State Phenomena 2020; 310: 65-80. DOI: 10.4028/www.scientific.net/ssp.310.65.
  90. Li Y, Zhang W, Tyberkevych V, Kwok W-K, Hoffmann A, Novosad V. Hybrid magnonics: Physics, circuits, and applications for coherent information processing. J Appl Phys 2020; 128(13): 130902. DOI: 10.1063/5.0020277.
  91. Gavrilov АV, Soifer VА. Prospects of optical analog computers development. Computer Optics 2012; 36(2) 140-150.
  92. Bugaev A. Resonant nanophotonic structures for analog optical computing. 2020 International Conference on Information Technology and Nanotechnology (ITNT) 2020: 1-5. DOI: 10.1109/ITNT49337.2020.9253358.
  93. Golovastikov NV, Bykov DA, Doskolovich LL. Temporal differentiation and integration of 3D optical pulses using phase-shifted Bragg gratings. Computer Optics 2017; 41(1): 13-21.  DOI: 10.18287/2412-6179-2017-41-1-13-21.
  94. Kashapov AI, Doskolovich LL, Bezus EA, Bykov DA, Soifer VA. Spatial differentiation of optical beams using a resonant metal-dielectric-metal structure. J Opt 2021; 23(2): 023501. DOI: 10.1088/2040-8986/abe63b.
  95. Danilov VA, Petrov NI. 20 Years without Iosif Norairovich Sissakian. CEUR Workshop Proc 2016; 1638: 223-235. DOI: 10.18287/1613-0073-2016-1638-236-248.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20