(46-1) 04 * << * >> * Russian * English * Content * All Issues

Generation of linearly polarized modes using a digital micromirror device and phase optimization
N.A. Correa-Rojas 1, R.D. Gallego-Ruiz 2, M.I. Álvarez-Castaño 1

Faculty of Engineering, Department of Electronics and Telecommunications,
Metropolitan Technological Institute, Medellin Calle 54A 30-01, Colombia;
Faculty of Engineering, Department of Electronics and Telecommunications
University of Antioquia, A.A. 1226, Medellin, Colombia

 PDF, 1580 kB

DOI: 10.18287/2412-6179-CO-857

Pages: 30-38.

Full text of article: English language.

Abstract:
Linearly polarized modes were generated from the fundamental LP01 using Lee holograms displayed on a digital micromirror device. The phase in the holograms was optimized using simulated annealing algorithm and complex amplitude correlation to improve the quality of the converted modes. The correlation measurements, and comparisons between numerical and experimental results, show the fidelity of the obtained modes and the effectiveness of the optimization. Furthermore, the optimized holograms can be combined to generate multiple modes spatially addressed with individual control. The results, and the use of a digital micromirror device instead of the most common liquid crystal modulators, make this method suitable for Modal Division Multiplexing systems and compatible with other optical telecommunication techniques like Wavelength and Polarization Division multiplexing, and reconfigurable optical networks.

Keywords:
phase modulation, spatial light modulators, diffractive optics, free-space optical communication, optical communications, modes; buffers, couplers, routers, switches, and multiplexers.

Citation:
Correa-Rojas NA, Gallego-Ruiz RD, Álvarez-Castaño MI. Generation of linearly polarized modes using a digital micromirror device and phase optimization. Computer Optics 2022; 46(1): 30-38. DOI: 10.18287/2412-6179-CO-857.

Acknowledgements:
The work was funded by the Metropolitan Technological Institute (Instituto Tecnológico Metropolitano), grant number P20222.

References:

  1. Essiambre R-J, Kramer G, Winzer PJ, Foschini GJ, Goebel B. Capacity limits of optical fiber networks. J Light Technol 2010; 28(4): 662-701. DOI: 10.1109/JLT.2009.2039464.
  2. Essiambre RJ, Tkach RW. Capacity trends and limits of optical communication networks. Proc IEEE 2012; 100(5): 1035-1055. DOI: 10.1109/JPROC.2012.2182970.
  3. Ellis AD, McCarthy ME, Al Khateeb MAZ, Sorokina M, Doran NJ. Performance limits in optical communications due to fiber nonlinearity. Adv Opt Photonics 2017; 9(3): 429-503. DOI: 10.1364/AOP.9.000429.
  4. Klaus W, Puttnam BJ, Luís RS, Sakaguchi J, Delgado Mendinueta J-M, Awaji Y, Wada N. Advanced space division multiplexing technologies for optical networks. J Opt Commun Netw 2017; 9(4): C1-C11. DOI: 10.1364/JOCN.9.0000C1.
  5. Ruffato G, Massari M, Parisi G, Romanato F. Test of mode-division multiplexing and demultiplexing in free-space with diffractive transformation optics. Opt Express 2017; 25: 7859-7868. DOI: 10.1364/OE.25.007859.
  6. Essiambre R-J, Ryf R, Fontaine NK, Randel S. Breakthroughs in photonics 2012: Space-division multiplexing in multimode and multicore fibers for high-capacity optical communication. IEEE Photonics J 2013; 5(2): 0701307. DOI: 10.1109/JPHOT.2013.2253091.
  7. Weng Y, Ip E, Pan Z, Wang T. Advanced spatial-division multiplexed measurement systems propositions-from telecommunication to sensing applications: A review. Sensors (Switzerland) 2016; 16(9): 1387. DOI: 10.3390/s16091387.
  8. Li G, Bai N, Zhao N. Space-division multiplexing: the next frontier in optical communication. Adv Opt Photonics 2014; 6(4): 413-487. DOI: 10.1364/AOP.6.000413.
  9. Richardson DJ, Fini JM, Nelson LE. Space-division multiplexing in optical fibres. Nat Photonics 2013; 7: 354-362. DOI: 10.1038/nphoton.2013.94.
  10. Al Amin A, Li A, Chen S, Chen X, Gao G, Shieh W. Dual-LP_11 mode 4x4 MIMO-OFDM transmission over a two-mode fiber. Opt Express 2011; 19(17): 16672-16679. DOI: 10.1364/OE.19.016672.
  11. Winzer PJ, Foschini GJ. MIMO capacities and outage probabilities in spatially multiplexed optical transport systems. Opt Express 2011; 19(17): 16680-16696. DOI: 10.1364/OE.19.016680.
  12. Kubota H, Morioka T. Few-mode optical fiber for mode-division multiplexing. Opt Fiber Technol 2011; 17: 490-494. DOI: 10.1016/j.yofte.2011.06.011.
  13. Arik SO, Kahn JM, Ho K-P. MIMO signal processing for mode-division multiplexing: An overview of channel models and signal processing architectures. IEEE Signal Process Mag 2014; 31: 25-34. DOI: 10.1109/MSP.2013.2290804.
  14. Sillard P, Bigot-Astruc M, Molin D. Few-mode fibers for mode-division-multiplexed systems. J Light Technol 2014; 32: 2824-2829. DOI: 10.1109/JLT.2014.2312845.
  15. Berdagué S, Facq P. Mode division multiplexing in optical fibers. Appl Opt 1982; 21(11): 1950-1955. DOI: 10.1364/AO.21.001950.
  16. Willner AE, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams. Adv Opt Photonics 2015; 7(1): 66-106. DOI: 10.1364/AOP.7.000066.
  17. Wang J, Yang JY, Fazal IM, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics 2012; 6: 488-496. DOI: 10.1038/nphoton.2012.138.
  18. Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013; 340: 1545-1548. DOI: 10.1126/science.1237861.
  19. Koebele C, Salsi M, Sperti D, et al. Two mode transmission at 2×100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer. Opt Express 2011; 19: 16593-16600. DOI: 10.1364/OE.19.016593.
  20. Saridis GM, Alexandropoulos D, Zervas G, Simeonidou D. Survey and evaluation of space division multiplexing: from technologies to optical networks. IEEE Commun Surv Tutorials 2015; 17: 2136-2156. DOI: 10.1109/COMST.2015.2466458.
  21. Winzer PJ. Making spatial multiplexing a reality. Nat Photonics 2014; 8: 345-348. DOI: 10.1038/nphoton.2014.58.
  22. Karpeev SV, Pavelyev VS, Soifer VA, Khonina SN, Duparre M, Luedge B, Turunen J. Transverse mode multiplexing by diffractive optical elements. Proc SPIE 2005; 5854: 163-169. DOI: 10.1117/12.634547.
  23. Soifer VA, Karpeev SV., Pavelyev VS, Duparre MR, Luedge B. Realization of an optical interconnection concept using transversal mode selection. Proc SPIE 2000; 4316: 152-162. DOI: 10.1117/12.407671.
  24. Karpeev SV, Pavelyev VS, Soifer VA, Doskolovich LL, Duparre MR, Luedge B. Mode multiplexing by diffractive optical elements in optical telecommunication. Proc SPIE 2003; 5480: 153-165. DOI: 10.1117/12.558775.
  25. Weng Y, He X, Pan Z. Space division multiplexing optical communication using few-mode fibers. Opt Fiber Technol 2017; 36: 155-180. DOI: 10.1016/j.yofte.2017.03.009.
  26. Khonina SN, Karpeev SV, Paranin VD. A technique for simultaneous detection of individual vortex states of Laguerre–Gaussian beams transmitted through an aqueous suspension of microparticles. Opt Lasers Eng 2018; 105: 68-74. DOI: 10.1016/j.optlaseng.2018.01.006.
  27. Lyubopytov VS, Tlyavlin AZ, Sultanov AK, Bagmanov VK, Khonina SN, Karpeev SV, Kazanskiy NL. Mathematical model of completely optical system for detection of mode propagation parameters in an optical fiber with few-mode operation for adaptive compensation of mode coupling. Computer Optics 2013; 37(3): 352-359. DOI: 10.18287/0134-2452-2013-37-3-352-359.
  28. Gao Y, Sun J, Chen G, Sima C. Demonstration of simultaneous mode conversion and demultiplexing for mode and wavelength division multiplexing systems based on tilted few-mode fiber Bragg gratings. Opt Express 2015; 23(8): 9959-9967. DOI: 10.1364/OE.23.009959.
  29. Wang W, Zhao J, Yu H, Yang Z, Zhang Y, Zhang Z, Guo C, Li G. Demonstration of 6×10 Gb/s MIMO-free polarization- and mode-multiplexed transmission. IEEE Photon Technol Lett 2018; 30(15): 1372-1375. DOI: 10.1109/LPT.2018.2848226.
  30. Carpenter J, Wilkinson TD. All optical mode-multiplexing using holography and multimode fiber couplers. J Lightw Technol 2012; 30: 1978-1984. DOI: 10.1109/JLT.2012.2191586.
  31. Garcia-Rodriguez D, Corral JL, Llorente R. Mode conversion for mode division multiplexing at 850 nm in standard SMF. IEEE Photon Technol Lett 2017; 29: 929-932. DOI: 10.1109/LPT.2017.2694605.
  32. von Hoyningen-Huene J, Ryf R, Winzer P. LCoS-based mode shaper for few-mode fiber. Opt Express 2013; 21: 18097-18110. DOI: 10.1364/OE.21.018097.
  33. Lee YS, Lim KS, Islam MR, Lai MH, Ahmad H. Dynamic LP01-LP11 mode conversion by a tilted binary phase plate. J Lightw Technol 2017; 35: 3597-3603. DOI: 10.1109/JLT.2016.2599179.
  34. Labroille G, Denolle B, Jian P, Morizur JF, Genevaux P, Treps N. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion. 2014 IEEE Photon Conf (IPC 2014) 2014: 518-519. DOI: 10.1109/IPCon.2014.6995478.
  35. Igarashi K, Souma D, Tsuritani T, Morita I. Performance evaluation of selective mode conversion based on phase plates for a 10-mode fiber. Opt Express 2014; 22(17): 20881-20893. DOI: 10.1364/OE.22.020881.
  36. Mohammed W. Selective excitation of the LP11 mode in step index fiber using a phase mask. Opt Eng 2006; 45: 074602. DOI: 10.1117/1.2219425.
  37. Li S, Mo Q, Hu X, Du C, Wang J. Controllable all-fiber orbital angular momentum mode converter. Opt Lett 2015; 40: 4376-4379. DOI: 10.1364/OL.40.004376.
  38. Fernandes GM, Muga NJ, Pinto AN. Tunable mode conversion using acoustic waves in optical microwires. J Lightw Technol 2014; 32: 3257-3265. DOI: 10.1109/JLT.2014.2330955.
  39. Shwartz S, Golub M, Ruschin S. Diffractive optical elements for mode-division multiplexing of temporal signals with the aid of Laguerre–Gaussian modes. Appl Opt 2013; 52(12): 2659-2669. DOI: 10.1364/AO.52.002659.
  40. Zhao Y, Liu Y, Wen J, Wang T. Mode converter based on the long period fiber gratings written in two mode fiber. 2015 Opto-Electronics Commun Conf (OECC 2015) 2015: 1-3. DOI: 10.1109/OECC.2015.7340080.
  41. Tulikumwenayo A. Construction of multi-mode fiber modes using phase masks. Thesis Rochester Inst Technol 2013. Source: <https://scholarworks.rit.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1026&context=theses>.
  42. Ferreira F, Borne D Van Den, Silva H, Monteiro P. Crosstalk optimization of phase masks for mode multiplexing in few mode fibers. OSA Technical Digest 2012: JW2A.37. DOI: 10.1364/NFOEC.2012.JW2A.37.
  43. Flamm D, Naidoo D, Schulze C, Forbes A, Duparré M. Mode analysis with a spatial light modulator as a correlation filter. Opt Lett 2012; 37(13): 2478-2480. DOI: 10.1364/OL.37.002478.
  44. Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators. Adv Opt Photonics 2016; 8(2): 200-227. DOI: 10.1364/AOP.8.000200.
  45. Ren Y-X, Lu R-D, Gong L. Tailoring light with a digital micromirror device. Ann Phys 2015; 527: 447-470. DOI: 10.1002/andp.201500111.
  46. Turtaev S, Leite IT, Mitchell KJ, Padgett MJ, Phillips DB, Čižmár T. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics. Opt Express 2017; 25(24): 29874-29884. DOI: 10.1364/OE.25.029874.
  47. Lerner V, Shwa D, Drori Y, Katz N. Shaping Laguerre–Gaussian laser modes with binary gratings using a digital micromirror device. Opt Lett 2012; 37(23): 4826-4828. DOI: 10.1364/OL.37.004826.
  48. Zhao Q, Gong L, Li Y-M. Shaping diffraction-free Lommel beams with digital binary amplitude masks. Appl Opt 2015; 54: 7553-7558. DOI:10.1364/AO.54.007553.
  49. Cheng J, Gu C, Zhang D, Chen S-C. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device. Opt Lett 2015; 40: 4875-4878. DOI: 10.1364/OL.40.004875.
  50. Ren Y-X, Li M, Huang K, Wu J-G, Gao H-F, Wang Z-Q, Li Y-M. Experimental generation of Laguerre-Gaussian beam using digital micromirror device. Appl Opt 2010; 49(10): 1838-1844. DOI: 10.1364/AO.49.001838.
  51. Ren YX, Fang ZX, Gong L, Huang K, Chen Y, Lu R-D. Dynamic generation of Ince-Gaussian modes with a digital micromirror device. J Appl Phys 2015; 117(13): 133106. DOI: 10.1063/1.4915478.
  52. Lee W-H. High efficiency multiple beam gratings. Appl Opt 1979; 18(13): 2152-2158. DOI: 10.1364/AO.18.002152.
  53. Davis JA, Valadéz KO, Cottrell DM. Encoding amplitude and phase information onto a binary phase-only spatial light modulator. Appl Opt 2003; 42(11): 2003-2008. DOI: 10.1364/AO.42.002003.
  54. Blanche P-A, Carothers D, Wissinger J, Peyghambarian N. Digital micromirror device as a diffractive reconfigurable optical switch for telecommunication. Journal of Micro/Nanolithography, MEMS, and MOEMS 2013; 13(1): 011104. DOI: 10.1117/1.JMM.13.1.011104.
  55. Khonina SN, Kotlyar VV, Soifer VA. Techniques for encoding composite diffractive optical elements. Proc SPIE 2003; 5036: 493-498. DOI: 10.1117/12.498521.
  56. Khonina SN, Ustinov AV. Binary multi-order diffraction optical elements with variable fill factor for the formation and detection of optical vortices of arbitrary order. Appl Opt 2019; 58(30): 8227-8236. DOI: 10.1364/AO.58.008227.
  57. Khonina SN, Balalayev SA, Skidanov RV, Kotlyar VV, Päivänranta B, Turunen J. Encoded binary diffractive element to form hyper-geometric laser beams. J Opt A–Pure Appl Opt 2009; 11(6): 065702. DOI: 10.1088/1464-4258/11/6/065702.
  58. Kotlyar VV, Khonina SN, Melekhin AS, Soifer VA. Encoding of diffractive optical elements by local phase jump method. Computer Optics 1999: 19: 54-64.
  59. Golub MA, Karpeev SV, Krivoshlykov SG, Prokhorov AM, Sisakyan IN, Soĭfer VA. Spatial filter investigation of the distribution of power between transverse modes in a fiber waveguide. Sov J Quantum Electron 1984; 14: 1255-1256. DOI: 10.1070/qe1984v014n09abeh006201.
  60. Golub MA, Karpeev SV, Kazanskiĭ NL, Mirzov AV, Sisakyan IN, Soĭfer VA, Uvarov GV. Spatial phase filters matched to transverse modes. Sov J Quantum Electron 1988; 18(3): 392-393. DOI: 10.1070/qe1988v018n03abeh011528.
  61. Bartelt HO, Lohmann AW, Freude W, Grau GK. Mode analysis of optical fibres using computer-generated matched filters. Electron Lett 1983; 19: 247-249. DOI: 10.1049/el:19830170.
  62. Kaiser T, Flamm D, Schröter S, Duparré M. Complete modal decomposition for optical fibers using CGH-based correlation filters. Opt Express 2009; 17(11): 9347-9356. DOI: 10.1364/OE.17.009347.
  63. Kaiser T, Lüdge B, Schröter S, Kauffmann D, Duparré M. Detection of mode conversion effects in passive LMA fibres by means of optical correlation analysis. Proc SPIE 2008; 6998: 69980J. DOI: 10.1117/12.783100.
  64. Gavrilov AV, Karpeev SV, Kazanskiy NL, Pavelyev VS, Duparré M, Luedge B, Schroeter S. Selective excitation of step-index fiber modes. Proc SPIE 2007; 6605: 660508. DOI: 10.1117/12.728461.
  65. Fang L, Zuo H, Pang L, Yang Z, Zhang X, Zhu J. Image reconstruction through thin scattering media by simulated annealing algorithm. Opt Lasers Eng 2018; 106: 105-110. DOI: 10.1016/j.optlaseng.2018.02.020.
  66. Gallego-Ruiz RD, Álvarez-Castão MI, Herrera-Ramírez JA, Correa NA. Optimization of phase masks using simulated annealing algorithm for mode conversion. J Phys Conf Ser 2020; 1547: 012007. DOI: 10.1088/1742-6596/1547/1/012007.
  67. Lan M, Gao L, Yu S, Nie S, Cai S, Qi X, Du Z, Ma C, Gu W. An arbitrary mode converter with high precision for mode division multiplexing in optical fibers. J Mod Opt 2015; 62(5): 348-352. DOI: 10.1080/09500340.2014.982223.
  68. Carpenter J, Wilkinson TD. Graphics processing unit–accelerated holography by simulated annealing. Opt Eng 2010; 49(9): 095801. DOI: 10.1117/1.3484950.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20