(46-1) 13 * << * >> * Russian * English * Content * All Issues

Semi-fragile watermarking with recovery capabilities for HGI compression method
A.Y. Bavrina 1,2, V.A. Fedoseev 2,1

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1214 kB

DOI: 10.18287/2412-6179-CO-1021

Pages: 103-112.

Full text of article: Russian language.

Abstract:
The article proposes a new semi-fragile watermarking system with the ability of tamper localization and recovery after distortions, adapted for the HGI image compression method. The system uses a hierarchical image structure when embedding and replaces the stage of post-interpolation residuals quantization with a special quantizer based on quantization index modulation. As a result, the protected image becomes resistant to HGI compression with an adjustable quality parameter. The proposed watermarking system allows an image to be restored after distortions with an acceptable quality. In this case, the authentication part and the recovery part operate at different hierarchical levels. The developed watermark system, compatible with the HGI compression method, may be used to protect remote sensing images and medical images from malicious distortion.

Keywords:
digital image processing, digital watermarks, image compression, hierarchical grid interpolation method.

Citation:
Bavrina AY, Fedoseev VA. Semi-fragile watermarking with recovery capabilities for HGI compression method. Computer Optics 2022; 46(1): 103-112. DOI: 10.18287/2412-6179-CO-1021.

Acknowledgements:
This work was financially supported by the Russian Foundation for Basic Research under projects ## 19-29-09045 and 19-07-00357 and a state contract 007-GZ/Ch3363/26.

References:

  1. Xuan X, Peng B, Wang W, Dong J. On the generalization of gan image forensics. In Book: Sun Z, He R, Feng J, Shan S, Guo Z, eds. Biometric recognition. Cham: Springer International Publishing; 2019: 134-141. DOI: 10.1007/978-3-030-31456-9_15.
  2. Westerlund M. The emergence of deepfake technology: A review. Technol Innov Manag Rev 2019; 9: 39-52.
  3. Nyeem H, Boles W, Boyd C. A review of medical image watermarking requirements for teleradiology. J Digit Imaging 2013; 26: 326-343. DOI: 10.1007/s10278-012-9527-x.
  4. Barni M, Bartolini F, Cappellini V, Magli E, Olmo G, Zanini R. Copyright protection of remote sensing imagery by means of digital watermarking. Proc SPIE 2001; 4540: 565-576. DOI: 10.1117/12.450706.
  5. Chuvieco E. Fundamentals of satellite remote sensing: An environmental approach. 2nd ed. Boca Raton: CRC Press; 2016.
  6. Rajalakshmi C, Germanux Alex M, Balasubramanian R. Copy move forgery detection using key point localized super pixel based on texture features. Computer Optics 2019; 43(2): 270-276. DOI: 10.18287/2412-6179-2019-43-2-270-276.
  7. Cox I, Miller M, Bloom J, Fridrich J, Kalker T. Digital watermarking and steganography. Burlington: Morgan Kaufmann; 2007. DOI: 10.1016/B978-0-12-372585-1.X5001-3.
  8. Barni M, Bartolini F. Watermarking systems engineering. New-York, USA: Marcel Dekker Inc; 2004.
  9. Evsutin OO, Shelupanov AA, Meshcheryakov RV, Bondarenko DO. An algorithm for information embedding into compressed digital images based on replacement procedures with use of optimization. Computer Optics 2017; 41(3): 412-421. DOI: 10.18287/2412-6179-2017-41-3-412-421.
  10. Gashnikov MV, Glumov NI, Sergeev VV. A hierarchical compression method for space images. Autom Remote Control 2010; 71(3): 501-513. DOI: 10.1134/S0005117910030112.
  11. Gashnikov MV, Glumov NI. Hierarchical grid interpolation for hyperspectral image compression. Computer Optics 2014; 38(1): 87-93. DOI: 10.18287/0134-2452-2014-38-1-87-93.
  12. Chen B, Wornell G. Quantization index modulation: A class of provably good methods for digital watermarking and information embedding. IEEE Transaction on Information Theory 2001; 47: 1423-1443.
  13. Rakhmawati L, Wirawan W, Suwadi S. A recent survey of self-embedding fragile watermarking scheme for image authentication with recovery capability. J Image Video Proc 2019; 61. DOI: 10.1186/s13640-019-0462-3.
  14. Singh D, Singh SK. Effective self-embedding watermarking scheme for image tampered detection and localization with recovery capability. J Vis Commun Image Represent 2016; 38: 775-789. DOI: 10.1016/j.jvcir.2016.04.023.
  15. Qin C, Wang H, Zhang X, Sun X. Self-embedding fragile watermarking based on reference-data interleaving and adaptive selection of embedding mode. Inf Sci 2016; 373: 233-250. DOI: 10.1016/j.ins.2016.09.001.
  16. Han Q, Han L, Wang E, Yang J. Dual watermarking for image tamper detection and self-recovery. Ninth International Conference on Intelligent Information Hiding and Multimedia Signal Processing 2013: 33-36. DOI: 10.1109/IIH-MSP.2013.17.
  17. Egorova AA, Fedoseev VA. A classification of semi-fragile watermarking systems for JPEG images. Computer Optics 2019; 43(3): 419-433. DOI: 10.18287/2412-6179-2019-43-3-419-433.
  18. Lin C-Y, Chang S-F. Issues and solutions for authenticating MPEG video. Proc SPIE 1999; 3657: 54-65. DOI: 10.1117/12.344703.
  19. Sun Q, Chang S-F, Kurato M, Suto M. A quantitative semi-fragile JPEG2000 image authentication system. IEEE ICIP 2002; 2: 921-924. DOI: 10.1109/ICIP.2002.1040102.
  20. The waterloo fractal coding and analysis group. 2019. Source: <http://links.uwaterloo.ca/Repository.html>.
  21. Mitekin V. A new key recovery attack against DM-QIM image watermarking algorithm. Proc SPIE 2017; 10341: 103411A. DOI: 10.1117/12.2268550.
  22. Quantization Matrix. 2021. Source: <https://www.sciencedirect.com/topics/computer-science/quantization-matrix>.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20