(46-2) 03 * << * >> * Russian * English * Content * All Issues

Topological charge of optical vortices in the far field with an initial fractional charge: optical "dipoles"
A.G. Nalimov 1,2, V.V. Kotlyar 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1002 kB

DOI: 10.18287/2412-6179-CO-1073

Pages: 189-195.

Full text of article: Russian language.

Abstract:
In this work, using the Rayleigh-Sommerfeld integral and the Berry formula, the topological charge (TC) of a Gaussian optical vortex with an initial fractional TC is calculated. It is shown that for different fractional parts of the TС, the beam contains a different number of screw dislocations, which determine the TС of the entire beam. With a small fractional part of the TС, the beam consists of the main optical vortex centered on the optical axis with the TС equal to the nearest integer (let be n), and two edge dislocations located on the vertical axis (above and below the center). With an increase in the fractional part of the initial TC, a "dipole" is formed from the upper edge dislocation, consisting of two vortices with TC+1 and –1. With a further increase in the fractional part, the additional vortex with TC+1 is displaced to the center of the beam, and the vortex with TC–1 is displaced to the periphery. With a further increase in the fractional part of the TC, another "dipole" is formed from the lower edge dislocation, in which, on the contrary, the vortex with TC–1 is displaced to the optical axis (to the center of the beam), and the vortex with TC+1 is displaced to the beam periphery. When the fractional part of the TC becomes equal to 1/2, the "lower" vortex with TC–1, which was displaced to the center of the beam, begins to shift to the periphery, and the "upper" vortex with TC+1 moves closer and closer to the center of the beam and merges with the main vortex when the fractional part approaches 1. Such dynamics of additional vortices with upper TC+1 and lower TC–1 determine the whole TC the beam have (n or n+1) for different values of the fractional part from the segment [n, n+1].

Keywords:
vector light beam, fractional topological charge, optical vortex, dipole from two vortices.

Citation:
Nalimov AG, Kotlyar VV. Topological charge of optical vortices in the far field with an initial fractional charge: optical "dipoles". Computer Optics 2022; 46(2): 189-195. DOI: 10.18287/2412-6179-CO-1073.

Acknowledgements:
The work was partly funded by the Russian Science Foundation grant #18-19-00595 (in part efinition of the problem"), the Samara University grant under the strategic academic leadership program "Priority-2030" (in part "Topological charge of the beam in the far field for initial TC 3<(mu)<4"), and the RF Ministry of Science and Higher Education within a state contract with the "Crystallography and Photonics" Research Center of the RAS (in part "Topological charge of the beam in the far field for initial TC 2<(mu)<3").

References:

  1. Ruffato G. OAM-inspired new optics: the angular metalens. Light Sci Appl 2021, 10: 96.
  2. Guo Y, Zhang S, Luo X. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 2021; 10: 63.
  3. Jin Z, Janoschka D, Deng J, Ge L, Dreher P, Frank B, Hu G, Ni J, Yang Y, Li J, Yu C, Lei D, Li G, Xiao S, Mei S, Giessen H, zu Heringdorf FM, Qiu C-W. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight 2021; 1: 5.
  4. Wei D, Cheng Y, Ni R, Zhang Y, Hu X, Zhu S, Xiao M. Generating controllable Laguerre-Gaussian laser modes through intracavity spin-orbital angular momentum conversion of light. Phys Rev Appl 2019; 11: 014038.
  5. Stella V, Grogjeon T, De Leo N, Boarino L, Munzerd P, Lakowicz JR, Descrovi E. Vortex beam generation by spin-orbit interaction with Bloch surface waves. ACS Photonics 2020; 7: 774-783.
  6. Arikawa T, Hiraoka T, Morimoto S, et al. Transfer of optical angular momentum of light to plasmonic excitations in metamaterials. Sci Adv 2020; 6(24): 253.
  7. Kotlyar VV, Stafeev SS, Nalimov AG, O'Faolain L, Kotlyar MV. A dual-functionality metalens to shape a circularly polarized optical vortex or a second-order cylindrical vector beam. Photonics Nanostruct 2021; 43: 100898. DOI: 10.1016/j.photonics.2021.100898.
  8. Zhu L, Tang M, Li H, Tai Y, Li X. Optical vortex lattice: an explotation of orbital angular momentum. Nanophotonics 2021; 10: 0139.
  9. Fu S, Zhai Y, Zhang J, Liu X, Song R, Zhou H, Gao C. Universal orbital angular momentum spectrum analyser for beams. PhotoniX 2020; 1: 19.
  10. Fatkhiev DM, Butt MA, Grakhova EP, Kutluyarov RV, Stepanov IV, Kazanskiy NL, Khonina SN, Lyubopytov VS, Sultanov AK. Recent advances in generation and detection of orbital angular momentum optical vortices – A Review. Sensors 2021; 21(15): 4988. DOI: 10.3390/s21154988.
  11. Zhu L, Wang J. A review of multiple optical vortices generation: methods and applications. Front Optoelectr 2019; 12(1): 52-68.
  12. Andrews DL. Symmetry and quantum features in optical vortices. Symmetry 2021; 13: 1368.
  13. Wang X, Nie Z, Liang Y, Wang J, Li T, Jia B. Recent advances on optical vortex generation. Nanophotonics 2018; 7(9): 1533-1556.
  14. Chen R, Zhou H, Moretti M, Wang X, Li J. Orbital angular momentum waves: generation, detection and emerging applications. IEEE Commun Surv Tutor 2020; 22(2): 840-868.
  15. Forbes A, de Oliveira M, Dennis MR. Structured light. Nat Photonics 2021; 15: 253-262.
  16. Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl 2019; 8: 90.
  17. Kotlyar VV, Kovalev AA, Porfirev AP. Vortex laser beams. Boca Raton: CRC Press; 2018. ISBN: 978-1-1385-4211-2.
  18. Kotlyar VV, Kovalev AA. Accelerating and vortex laser beams. Boca Raton: CRC Press; 2019. ISBN: 978-0-4293-2161-0.
  19. Capasso F, Couwenberg D, eds. Frontires in optics and photonics. de Gruyter GmbH; 2021.
  20. Berry MV. Optical vortices evolving from helicoidal integer and fractional phase steps. J Opt A: Pure Appl Opt 2004; 6(2): 259-268.
  21. Gbur G. Fractional vortex Hilbert's hotel. Optica 2016; 3(3): 222-225.
  22. Hickmann JM, Fonseca EJS, Soares WC, Chavez-Cerda S. Unveiling a truncated optical lattice associated with a triangular aperture using lights orbital angular momentum. Phys Rev Lett 2010; 105: 053904.
  23. Mourka A, Baumgartl J, Shanor C, Dholakia K, Wright EM. Visualization of the birth of an optical vortex using diffraction from a triangular aperture. Opt Express 2011; 19(7): 5760-5771.
  24. Kotlyar VV, Kovalev AA, Porfirev AP. Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl Opt 2017; 56(14): 4095-4104. DOI: 10.1364/AO.56.004095.
  25. Leach J, Yao E, Padgett MJ. Observation of the vortex structure of a non-integer vortex beam. New J Phys 2004; 6: 71.
  26. Gotte JB, Franke-Arnold S, Zambrini R, Barnett SM. Quantum formulation of fractional orbital angular momentum. J Mod Opt 2007; 54(12): 1723-1738.
  27. Jesus-Silva AJ, Fonseca EJS, Hickmann JM. Study of the birth of a vortex at Fraunhofer zone. Opt Lett 2012; 37(21): 4552-4554.
  28. Wen J, Wang L, Yang X, Zhang J, Zhu S. Vortex strength and beam propagation factor of fractional vortex beams. Opt Express 2019; 27(4): 5893-5904.
  29. Kotlyar VV, Kovalev AA, Volyar AV. Topological charge of a linear combination of optical vortices: topological competition. Opt Express 2020; 28(6): 8266-8281. DOI: 10.1364/OE.386401.
  30. Kotlyar VV, Kovalev AA, Nalimov AG, Porfirev AP. Evolution of an optical vortex with an initial fractional topological charge. Phys Rev A 2020; 102(2): 023516. DOI: 10.1103/PhysRevA.102.023516.
  31. Nalimov AG, Kotlyar VV, Soifer VA. Modeling of an image forming by a zone plate in X-ray. Computer Optics 2011; 35(3): 290-296.
  32. Volyar A, Bretsko M, Akimova Ya, Egorov Yu. Vortex avalanche in the perturbed singular beams. J Opt Soc Am A 2019; 36: 1064-1071 .

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20