(46-2) 19 * << * >> * Russian * English * Content * All Issues

Two calibration models for compensation of the individual elements properties of self-emitting displays
O.A. Basova 1,2, S.A. Gladilin 2, A.S. Grigoryev 2, D.P. Nikolaev 2,3

Moscow Institute of Physics and Technology (National Research University),
141701, Moscow Region, Dolgoprudny, Institutsky pereulok 9, Russia,
Institute for Information Transmission Problems of Russian Academy of Sciences (Kharkevich Institute),
127051, Moscow, Bolshoy Karetny pereulok 19, Russia,
LLC "Smart Engines Service", 117312, Moscow, prospect 60-letiya Oktyabrya 9, Russia

 PDF, 2470 kB

DOI: 10.18287/2412-6179-CO-854

Pages: 335-344.

Full text of article: English language.

Abstract:
In this paper, we examine the applicability limits of different methods of compensation of the individual properties of self-emitting displays with significant non-uniformity of chromaticity and maximum brightness. The aim of the compensation is to minimize the perceived image non-uniformity. Compensation of the displayed image non-uniformity is based on minimizing the perceived distance between the target (ideally displayed) and the simulated image displayed by the calibrated screen. The S-CIELAB model of the human visual system properties is used to estimate the perceived distance between two images. In this work, we compare the efficiency of the channel-wise and linear (with channel mixing) compensation models depending on the models of variation in the characteristics of display elements (subpixels). It was found that even for a display with uniform chromatic subpixels characteristics, the linear model with channel mixing is superior in terms of compensation accuracy.

Keywords:
displays; non-uniformity compensation; dead pixel compensation; display calibration; image enhancement; spatial filtering; spatial resolution; human visual system model; S-CIELAB.

Citation:
Basova OA, Gladilin SA, Grigoryev AS, Nikolaev DP. Two calibration models for compensation of the individual elements properties of self-emitting displays. Computer Optics 2022; 46(2): 335-344. DOI: 10.18287/2412-6179-CO-854.

Acknowledgements:
This work was supported by Russian Science Foundation (Project No. 20-61-47089).

References:

  1. Arnold AD, Cok RS. OLED display with aging compensation. US Patent 6995519 of February 7, 2006.
  2. Harris S. Color and luminance uniformity correction for LED video screens. Source: <www.signindustry.com/led/articles/2007-10-15-SH-PulseWidthModulationPWMCorrectionOfLEDDisplays.php3>.
  3. Uttwani PK, Villari BC, Unni KN, Singh R, Awasthi A Detection of physical defects in full color passive-matrix OLED display by image driving techniques. Journal of Display Technology 2012; 8(3): 154-161. DOI: 10.1109/jdt.2011.2168805.
  4. Basova OA, Grigoryev AS, Savchik AV, Sidorchuk DS, Nikolaev DP. On optimal visualization of images on photoemission displays with significant dispersion of efficiency of individual elements [in Russian]. Sensornye sistemy 2020; 34(1): 25-31. DOI: 10.31857/S0235009220010047.
  5. Sharma G. Color fundamentals for digital imaging. In Book: Sharma G, ed. Digital color imaging handbook. Ch 1. Boca Raton: CRC Press; 2003: 1-114.
  6. Viggiano JAS. Comparison of the accuracy of different white-balancing options as quantified by their color constancy. Proc SPIE 2004; 5301: 323-333. DOI: 10.1117/12.524922.
  7. Man K, Ashdown I. Accurate colorimetric feedback for RGB LED clusters. Proc SPIE 2006; 6337: 633702. DOI: 10.1117/12.683239.
  8. Kimpe T, Xthona A, Matthijs P. P-11: Spatial noise and non-uniformities in medical LCD displays: Solution and performance results. 2004. Source:        <https://www.researchgate.net/profile/Tom-Kimpe/publication/228879086_P-11_Spatial_Noise_and_Non-Uniformities_in_Medical_LCD_Displays_Solution_and_Performance_Results/links/0deec5315d08a1e426000000/P-11-Spatial-Noise-and-Non-Uniformities-in-Medical-LCD-Displays-Solution-and-Performance-Results.pdf>.
  9. Kimpe T, Coulier S, Van Hoey G. Human vision-based algorithm to hide defective pixels in LCDs. Proc SPIE 2006; 6057: 60570N. DOI: 10.1117/12.649240.
  10. Kimpe T. Display assemblies and computer programs and methods for defect compensation. US Patent 8164598 of April 24, 2012.
  11. Verstraete G, Kimpe T. Optical correction for high uniformity panel lights. US Patent 9070316 of June 30, 2015.
  12. Messing DS, Kerofsky LJ. Using optimal rendering to visually mask defective subpixels. Proc SPIE 2006; 6057: 60570O. DOI: 10.1117/12.644321.
  13. Stellbrink J. Comparison of vision-based algorithms for hiding defective sub-pixels. Proc SPIE 2007; 6494: 64940Q. DOI: 10.1117/12.704336.
  14. McFadden SB, Ward PAS. Improving image quality of tiled displays. In Book: Kamel M, Campilho A, eds. Image Analysis and Recognition. ICIAR 2015. Cham: Springer; 2015: 22-29. DOI: 10.1007/978-3-319-20801-5_3.
  15. Jepsen ML, Loomis NC, Bastani B, Vieri C, Braley C, Abercrombie SCB. Masking non-functioning pixels in a display. US Patent 10354577 B1 of June 16, 2019.
  16. Stone MC. Color and brightness appearance issues in tiled displays. IEEE Comput Graph Appl 2001; 21(5): 58-66. DOI: 10.1109/38.946632.
  17. Bern M, Eppstein D. Optimized color gamuts for tiled displays. Proceedings of the Nineteenth Annual Symposium on Computational geometry 2003: 274-281. DOI: 10.1145/777792.777834.
  18. Chaji G, Dionne JM, Azizi Y, Jaffari J, Hormati A, Liu T, Alexander S. System and methods for aging compensation in AMOLED displays. US Patent 9786209 B2 of October 10, 2017.
  19. Chaji G. Compensation for color variations in emissive devices. US Patent 10181282 B2 of January 15, 2019.
  20. Nathan A, Chaji G, Alexander S, Servati P, Huang RI, Church C. Method and system for programming, calibrating and/or compensating, and driving an LED display. US Patent 10699624 B2 of June 30, 2020.
  21. Mao XY, Wang RG, Cheng HB, Miao J, Chen Y, Cao H. Calibration of abnormal brightness area on the LED Display. ITM Web of Conferences 2017; 11: 02001. DOI: 10.1051/itmconf/20171102001.
  22. Kim K, Lim T, Kim C, Park S, Park C, Keum C. High-precision color uniformity based on 4D transformation for micro-LED. Proc SPIE 2020; 11302: 113021U. DOI: 10.1117/12.2542728.
  23. Wuerger SM, Watson AB, Ahumada AJ Jr. Towards a spatio-chromatic standard observer for detection. Proc SPIE 2002; 4662: 159-172. DOI: 10.1117/12.469512.
  24. Smith T, Guild J. The CIE colorimetric standards and their use. Trans Opt Soc 1931; 33(3): 73. DOI: 10.1088/1475-4878/33/3/301.
  25. CIE recommendations on uniform color spaces, color-difference equations, and metric color terms. Color Res Appl 1977; 2(1): 5-6. DOI: 10.1002/j.1520-6378.1977.tb00102.x.
  26. Zhang X, Wandell BA. A spatial extension of CIELAB for digital color image reproduction. SID International Symposium Digest of Technical Papers 1996; 27: 731-734. DOI: 10.1889/1.1985127.
  27. Bozhkova VP, Basova OA, Nikolaev DP. Mathematical models of spatial color perception [In Russian]. Information Processes 2019; 19(2): 187-199.
  28. Luo MR, Cui G, Rigg B. The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Res Appl 2001; 26(5): 340-350. DOI: 10.1002/col.1049.
  29. Konovalenko IA, Smagina AA, Nikolaev DP, Nikolaev PP. Prolab: perceptually uniform projective colour coordinate system [In Russian]. Sensory Systems 2020; 34(4): 307-328. DOI: 10.31857/S0235009220040034.
  30. Sai SV. Metric of fine structures distortions of compressed images. Computer Optics 2018; 42(5): 829-837. DOI: 10.18287/2412-6179-2018-42-5-829-837.
  31. Frackiewicz M, Palus H. New image quality metric used for the assessment of color quantization algorithms. Proc SPIE 2017; 10341: 103411G. DOI: 10.1117/12.2268531.
  32. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv Preprint 2014. Source: <https://arxiv.org/abs/1412.6980>.
  33. Darkhovsky BS, Popkov AY, Popkov YS. Method of batch Monte Carlo iterations /to solving by global optimization problems [In Russian]. Journal of Information Technologies and Computing Systems 2014; 3: 39-52.
  34. Limonova EE, Matveev DM, Nikolaev DP, Arlazarov VV. Bipolar morphological neural networks: convolution without multiplication. Proc SPIE 2020; 11433: 114333J. DOI: 10.1117/12.2559299.
  35. Acceptable number of defective pixels LCD, OLED modules of TVs and displays [In Russian]. Source: <www.lg.com/ru/support/product-help/CT20206007-1347276421471>.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20