(47-2) 01 * << * >> * Russian * English * Content * All Issues

Multifocal metalens for detecting several topological charges at different wavelengths
A.G. Nalimov 1,2, V.V. Kotlyar 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1438 kB

DOI: 10.18287/2412-6179-CO-1170

Pages: 201-207.

Full text of article: Russian language.

Abstract:
A combined high-aperture metalens in a thin silicon nitride film, which consists of two inclined sector metalens, is considered. Each sector metalens consists of a set of binary subwavelength gratings. The diameter of the lens is 14 μm. It has been shown using time-domain finite difference method that the metalens can simultaneously detect optical vortices with two topological charges –1 and –2, in almost the entire visible wavelength range. The metalens can distinguish several wavelengths that are focused at different points in the focal plane: a 1 nm change in wavelength results in a focal spot shift of about 4 nm. When the metalens is illuminated by a Gaussian beam with left-handed circular polarization, two optical vortices with topological charges 1 and 2 are simultaneously formed at 6 nm between each other at focal distance equals 6 nm. This metalens can be used to increase information in transmission channel in wireless telecommunication systems by selecting the space-time modes of laser radiation with different topological charges and different wavelengths. The considered microlens is an example of a compact demultiplexer.

Keywords:
topological charge, optical vortex, multifocal metalens.

Citation:
Nalimov AG, Kotlyar VV. Multifocal metalens for detecting several topological charges at different wavelengths. Computer Optics 2023; 47(2): 201-207. DOI: 10.18287/2412-6179-CO-1170.

Acknowledgements:
The work was partly funded by the Russian Science Foundation under grant #22-22-00265 (Sections "Theoretical background", "Numerical simulation of different incident wavelengths") and the RF Ministry of Science and Higher Education within a state contract with the FSRC "Crystallography and Photonics" RAS (Sections "Introduction", "Numerical simulation of detecting several TCs", and "Conclusion").

References:

  1. Wang W, Guo Z, Zhou K, Sun Y, Shen F, Li Y, Qu S, Liu S. Polarization-independent longitudinal multi-focusing metalens. Opt Express 2015; 23: 29855-29866. DOI: 10.1364/OE.23.029855.
  2. Tian S, Guo H, Hu J, Zhuang S. Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency. Opt Express 2019; 27: 680-688. DOI: 10.1364/OE.27.000680.
  3. Kim C, Kim S, Lee B. Doublet metalens design for high numerical aperture and simultaneous correction of chromatic and monochromatic aberrations. Opt Express 2020; 28: 18059-18076. DOI: 10.1364/OE.387794.
  4. Li M, Li S, Chin L, Yu Y, Tsai D, Chen R. Dual-layer achromatic metalens design with an effective Abbe number. Opt Express 2020; 28: 26041-26055. DOI: 10.1364/OE.402478.
  5. Shan D, Xu N, Gao J, Song N, Liu H, Tang Y, Feng X, Wang Y, Zhao Y, Chen X, Sun Q. Design of the all-silicon long-wavelength infrared achromatic metalens based on deep silicon etching. Opt Express 2022; 30: 13616-13629. DOI: 10.1364/OE.449870.
  6. Chantakit T, Schlickriede C, Sain B, Meyer F, Weiss T, Chattham N, Zentgraf T. All-dielectric silicon metalens for two-dimensional particle manipulation in optical tweezers. Photonics Res 2020; 8: 1435-1440. DOI: 10.1364/PRJ.389200.
  7. Fan C, Chuang T, Wu K, Su G. Electrically modulated varifocalmetalens combined with twisted nematic liquid crystals. Opt Express 2020; 28: 10609-10617. DOI: 10.1364/OE.386563.
  8. Ma X, He W, Xin L, Yang Z, Liu Z. Imaging performance of a mid-infrared metalens with a machining error. Appl Opt 2022; 61: 60-68. DOI: 10.1364/AO.438728.
  9. Qian Z, Tian S, Zhou W, Wang J, Guo H. Broadband achromatic longitudinal bifocal metalens in the visible range based on a single nanofin unit cell. Opt Express 2022; 30: 11203-11216. DOI: 10.1364/OE.450601.
  10. Xie Y, Zhang J, Wang S, Liu D, Wu X. Broadband polarization-insensitive metalens integrated with a charge-coupled device in the short-wave near-infrared range. Opt Express 2022; 30: 11372-11383. DOI: 10.1364/OE.454878.
  11. Liu M, Cao J, Xu N, Wang B. Broadband achromatic metalens for linearly polarized light from 450 to 800  nm. Appl Opt 2021; 60: 9525-9529.
  12. Wang W, Guo Z, Li R, Zhang J, Liu Y, Wang X, Qu S. Ultra-thin, planar, broadband, dual-polarity plasmonic metalens. Photonics Res 2015; 3: 68-71.
  13. Ye H, Sun Q, Guo Z, Hou Y, Wen F, Yuan D, Qin F, Zhou G. Theoretical realization of single-mode fiber integrated metalens for beam collimating. Opt Express 2021; 29: 27521-27529.
  14. Wang G, Habib U, Yan Z, Gomes N, Sui Q, Wang J, Zhang L, Wang C. Highly efficient optical beam steering using an in-fiber diffraction grating for full duplex indoor optical wireless communication. J Lightw Technol 2018; 36: 4618-4625.
  15. Shen Z, Xiang Z, Wang Z, Shen Y, Zhang B. Optical spanner for nanoparticle rotation with focused optical vortex generated through a Pancharatnam–Berry phase metalens. Appl Opt 2021; 60: 4820-4826.
  16. Guo Y, Zhang S, Luo X. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 2021; 10: 63.
  17. Jin Z, Janoschka D, Deng J, Ge L, Dreher P, Frank B, Hu G, Ni J, Yang Y, Li J, Yu G et al. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight 2021; 1: 1.
  18. Kotlyar VV, Stafeev SS, Nalimov AG, O’Faolain L, Kotlyar MV. A dual-functionality metalens to shape a circularly polarized optical vortex or a second-order cylindrical vector beam. Photonics Nanostruct 2021; 43: 100898. DOI: 10.1016/j.photonics.2021.100898.
  19. Kotlyar VV, Nalimov AG, Stafeev SS, Hu C, O'Faolain L, Kotlyar MV, Gibson D, Song S. Thin high numerical aperture metalens. Opt Express 2017; 25(7): 8158-8167. DOI: 10.1364/OE.25.008158.
  20. Heckenberg NR, McDuff R, Smith CP, White AG. Generation of optical singularities by computer-generated holograms. Opt Lett 1992; 17(3): 221-223.
  21. Lalanne P, Lemercier-Lalanne D. On the effective medium theory of subwavelength periodic structures. J Mod Opt 1996; 43: 2063-2085.
  22. Kotlyar VV, Nalimov AG. A vector optical vortex generated and focused using a metalens. Computer Optics 2017; 41(5): 645-654. DOI: 10.18287/2412-6179-2017-41-5-645-654.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20