(47-2) 04 * << * >> * Russian * English * Content * All Issues

High-efficiency and easy-to-fabricate integrated plasmonic grating couplers for the telecommunication wavelength range
D.S. Zemtsov 1,2, A.K. Zemtsova 1,2, A.S. Smirnov 1, K.N. Garbuzov 1, R.S. Starikov 2, S.S. Kosolobov 1, V.P. Drachev 1

Skolkovo Institute of Science and Technology (Skoltech),
121205, Russian Federation, Moscow, Bolshoy boulevard, 30, 1;
National Research Nuclear University «MEPhI»,
115409, Russian Federation, Moscow, Kashirskoe rd., 31

 PDF, 1005 kB

DOI: 10.18287/2412-6179-CO-1168

Pages: 224-229.

Full text of article: Russian language.

Abstract:
The paper describes results of the numerical simulation and experimental characterization of plasmonic gratings and waveguides in the optical range of 1520 – 1630 nm. Gold structures were coated with a 630-nm thick tetraethylorthosilicate layer to achieve higher coupling efficiency for plasmonic gratings using lensed optical probes. We experimentally demonstrated gold input/output plasmonic gratings with an efficiency of about – 3.8 ± 0.2 dB per grating. The measured loss of the plasmonic mode propagating over the surface of the gold waveguide was 0.14 ± 0.02 dB / μm. The work was carried out with the aim of studying integrated plasmonic structures for the development of a hybrid photonic-plasmonic integrated technology.

Keywords:
integrated optics, integrated plasmonics, diffraction and gratings, waveguides, optical telecommunication range.

Citation:
Zemtsov DS, Zemtsova AK, Smirnov AS, Garbuzov KN, Starikov RS, Kosolobov SS, Drachev VP. High-efficiency and easy-to-fabricate integrated plasmonic grating couplers for the telecommunication wavelength range. Computer Optics 2023; 47(2): 224-229. DOI: 10.18287/2412-6179-CO-1168.

References:

  1. Reed G, Mashanovich G, Gardes F, et al. Silicon optical modulators. Nature Photon 2010; 4: 518-526. DOI: 10.1038/nphoton.2010.179.
  2. Pshenichnyuk IA, Nazarikov GI, Kosolobov SS, Maimistov AI, Drachev VP. Edge-plasmon assisted electro-optical modulator. Phys Rev B 2019; 100(19): 195434. DOI: 10.1103/PhysRevB.100.195434.
  3. Ayata M, Fedoryshyn Y, Heni W, Baeuerle B, Josten A, Zahner M, Koch U, Salamin Y, Hoessbacher C, Haffner C, Elder DL, Dalton LR, Leuthold J. High-speed plasmonic modulator in a single metal layer. Science 2017; 358: 630. DOI: 10.1126/science.aan5953.
  4. Kazanskiy NL, Butt MA, Degtyarev SA, Khonina SN. Achievements in the development of plasmonic waveguide sensors for measuring the refractive index. Computer Optics 2020; 44(3): 295-318. DOI: 10.18287/2412-6179-CO-743.
  5. Krupin O, Asiri H, Wang C, Tait RN, Berini P. Biosensing using straight long-range surface plasmon waveguides. Opt Express 2013; 21(1): 698-709. DOI: 10.1364/OE.21.000698.
  6. Dyshlyuk AV, Bogdanov AA, Vitrik OB. Excitation of surface plasmon waves with a nanoantenna: simple analytical solution and its numerical verification. Computer Optics 2020; 44(6): 893-900. DOI: 10.18287/2412-6179-CO-755.
  7. Nesterenko DV, Pavelkin RA, Hayashi S. Estimation of resonance characteristics of single-layer surface-plasmon sensors in liquid solutions using Fano’s approximation in the visible and infrared regions. Computer Optics 2019; 43(4): 596-604. DOI: 10.18287/2412-6179-2019-43-4-596-604.
  8. Ayata M, Fedoryshyn Y, Koch U, Leuthold J. Compact, ultra-broadband plasmonic grating couplers. Opt Express 2019; 27: 29719-29729. DOI: 10.1364/oe.27.029719.
  9. Messner A, Jud PA, Winiger J, Eppenberger M, Chelladurai D, Heni W, Baeuerle B, Koch U, Ma P, Haffner C, Xu H, Elder DL, Dalton LR, Smajic J, Leuthold J. Broadband metallic fiber-to-chip couplers and a low-complexity integrated plasmonic platform. Nano Lett 2021; 21(11): 4539. DOI: 10.1021/acs.nanolett.0c05069.
  10. Zemtsov DS, Zhigunov DM, Kosolobov SS, Zemtsova AK, Puplauskis M, Pshenichnyuk IA, Drachev VP. Broadband silicon grating couplers with high efficiency and robust design. Opt Lett 2022; 47(13): 3339-3342. DOI: 10.1364/OL.457284.
  11. Leißner T, Jauernik S, Lemke C, Fiutowski J, Thilsing-Hansen K, Kjelstrup-Hansen J, Rubahn H-G, Bauer M. Application of a grating coupler for surface plasmonpolariton excitation in a photoemission electron microscopy experiment. Proc SPIE 2012; 8424: 84241D. DOI: 10.1117/12.921761.
  12. Devaux E, Ebbesen TW, Weeber JC, Dereux A. Launching and decoupling surface plasmons via micro-gratings. Appl Phys Lett 2003; 83: 4936. DOI: 10.1063/1.1634379.
  13. Koev ST, Agrawal A, Lezec HJ, Aksyuk VA. An efficient large-area grating coupler for surface plasmon polaritons. Plasmonics 2012; 7: 269. DOI: 10.1007/s11468-011-9303-7.
  14. Marchetti R, Lacava C, Carroll L, Gradkowski K, Minzioni P. Coupling strategies for silicon photonics integrated chips. Photonics Res 2019; 7: 201. DOI: 10.1364/prj.7.000201.
  15. Lirong C, Simei M, Zhi L, Yaqi H, Fu HY. Grating couplers on silicon photonics: Design principles, emerging trends and practical issues. Micromachines 2020; 11(7): 666. DOI: 10.3390/mi11070666.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20