(47-3) 07 * << * >> * Russian * English * Content * All Issues

Modified prism methods for measuring the refractive index of solid and liquid substances
A.I. Yurin 1,2, G.N. Vishnyakov 2,3, V.L. Minaev 1,2

HSE University, 101000, Moscow, Russia, Myasnitskaya 20;
All-Russian Research Institute for Optical and Physical Measurements, 119361, Moscow, Russia, Ozernaya 46;
Bauman University, 105005, Moscow, Russia, 2 Baumansksya 5, bld. 4

 PDF, 832 kB

DOI: 10.18287/2412-6179-CO-1230

Pages: 392-397.

Full text of article: Russian language.

Abstract:
Methods for measuring the refractive index of optically transparent dielectric materials are considered. Modified methods based on the methods of minimum deviation and constant deviation are proposed and allow determining the refractive index of triangular prisms with unknown apex angles. In the proposed methods, the angles of light deviation on three faces of the prism are measured, and the refractive index of the material and the prism angles are determined from the solution of a system of equations. To implement the proposed methods, a goniometric system is used. That system was designed to measure angles between the flat surfaces of objects in manual and automated modes. Reference prism samples made of N-SF 1 optical glass, and a hollow prism filled with distilled water are studied. The proposed methods are compared and the measurement error is estimated. It is shown that the modified methods can be used for high-precision measurements of the refractive index in cases where the angles of the prism are unknown, or their measurement is associated with technical difficulties.

Keywords:
refractive index, refractometry, goniometer, prism method, optical materialsx.

Citation:
Yurin AI, Vishnyakov GN, Minaev VL. Modified prism methods for measuring the refractive index of solid and liquid substances. Computer Optics 2023; 47(3): 392-397. DOI: 10.18287/2412-6179-CO-1230.

Acknowledgements:
This work was financially supported by the All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI).

References:

  1. Kazanskiy NL, Butt MA, Degtyarev SA, Khonina SN. Achievements in the development of plasmonic waveguide sensors for measuring the refractive index. Computer Optics 2020; 44(3): 295-318. DOI: 10.18287/2412-6179-CO-743.
  2. Oti W. Using refractometer to determine the sugar content in soft drinks commonly consumed in Abakaliki, Nigeria. IOSR J Appl Chem 2016; 9: 89-91. DOI: 10.9790/5736-0907018991.
  3. Shehadeh A, Evangelou A, Kechagia D, et al. Effect of ethanol, glycerol, glucose/fructose and tartaric acid on the refractive index of model aqueous solutions and wine samples. Food Chem 2020; 329: 127085. DOI: 10.1016/j.foodchem.2020.127085.
  4. Xu M, Shao S, Weng N, Zhou L, Liu Q, Zhao Y. Atmospheric optical turbulence characteristics over the ocean relevant to astronomy and atmospheric physics. Appl Sci 2021; 11: 10548. DOI: 10.3390/app112210548.
  5. Nitta T, Sekimoto Y, Hasebe T, et al. Design, fabrication and measurement of pyramid-type antireflective structures on columnar crystal silicon lens for millimeter-wave astronomy. J Low Temp Phys 2018; 193: 976-983. DOI: 10.1007/s10909-018-2047-4.
  6. Shengli X, Sujuan H, Cheng Y, Ning M, Tingyun W. Refractive index profile measurement of planar optical waveguides based on the near-field technique and digital holography. Opt Fiber Technol 2022; 72: 102991. DOI: 10.1016/j.yofte.2022.102991.
  7. Lee C, Choi H, Jin J, Cha M. Measurement of refractive index dispersion of a fused silica plate using Fabry–Perot interference Appl Opt 2016; 55: 6285-6291. DOI: 10.1364/AO.55.006285.
  8. Rathmann CL, Mann GH, Nordberg ME. A new ultralow-expansion, modified fused-silica glass. Appl Opt 1968; 7: 819-823. DOI: 10.1364/AO.7.000819.
  9. Wray JH, Neu JT. Refractive index of several glasses as a function of wavelength and temperature. J Opt Soc Am 1969; 59: 774-776. DOI: 10.1364/JOSA.59.000774.
  10. Kuiper M, Van de Nes A, Nieuwland R, Varga Z, Van der Pol E. Reliable measurements of extracellular vesicles by clinical flow cytometry. Am J Reprod Immunol 2021; 85(2): e13350. DOI: 10.1111/aji.13350.
  11. Konopel’ko LA. Methods of refractive index measurements in physical chemistry [In Russian]. Moscow: Triumph” Publisher; 2020. DOI: 10.32986/978-5-907052-08-03-2020-208.
  12. Baijin S, Beibei Q, Fan Z, Lixi Z, Ou X, Yuwen Q, Hybrid fiber interferometer sensor for simultaneous measurement of strain and temperature with refractive index insensitivity. Opt Commun 2022; 522: 128637. DOI: 10.1016/j.optcom.2022.128637.
  13. Leikin MV, Molochnikov BI, Morozov VN, Shakaryan ES. Reflective refractometry [In Russian]. Leningrad: “Mashinostroenie” Publisher; 1983.
  14. Astrua M, Pisani M. Prism refractive index measurement at INRiM. Meas Sci Technol 2009; 20: 095305. DOI: 10.1088/0957-0233/20/9/095305.
  15. Plotnichenko VG, Sokolov VO. Influence of absorption on the refractive index determination accuracy by the minimum deviation method. Appl Opt 2018; 57: 639-647. DOI: 10.1364/AO.57.000639.
  16. Pavlov PA, Filatov YuV, Zhuravleva IB. Calibration of rotary encoders with different interfaces by means of a dynamic goniometer. Opt Eng 2021; 60(7): 074105. DOI: 10.1117/1.OE.60.7.074105.
  17. GOST 28869-90. Optical materials. Methods of measuring the refractive index [In Russian]. – Moscow: "Izdateljstvo standartov" Publisher; 1990.
  18. ISO 21395-1:2020. Optics and photonics – Test method for refractive index of optical glasses – Part 1: Minimum deviation method. Geneva, Switzerland: ISO; 2020.
  19. Yoffe BV. Refractometric methods of chemistry [In Russian]. Leningrad: “Himiya” Publisher; 1974.
  20. Born M, Wolf E. Principles of optics. Electromagnetic theory of propagation, interference and diffraction of light. 7th ed. Cambridge: Cambridge University Press; 1999. ISBN: 978-0-521-64222-4.
  21. Vishnyakov GN, Levin GG, Kornysheva SV, Zyuzev GN, Lyudomirskii MB, Pavlov PA, Filatov YuV. Measuring the refractive index on a goniometer in the dynamic regime. J Opt Technol 2005; 72(12): 929-933. DOI: 10.1364/JOT.72.000929.
  22. Tilton LW. Prism refractometry and certain goniometrical requirements for precision (Classic reprint). Forgotten Books; 2017.
  23. Vishnyakov GN, Fricke A, Parkhomenko NM, Hori Y, Pisani M. Report on supplementary comparison COOMET.PR-S3: refractive index. Metrologia 2016; 53: 1A. DOI: 10.1088/0026-1394/53/1A/02001.
  24. Edlen B. The refractive index of air. Metrologia 1966; 2(2): 71-80. DOI: 10.1088/0026-1394/2/2/002.
  25. Vishnyakov GN, Minaev VL, Bochkareva SS. State primary standard of refractive index GET 138-2021 [In Russian]. Measurement Techniques 2022; 5: 4-9. DOI: 10.32446/0368-1025it.2022-5-4-9.
  26. Daimon M, Masumura A. Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl Opt 2007; 46(18): 3811-3820. DOI: 10.1364/AO.46.003811.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20