(47-3) 09 * << * >> * Russian * English * Content * All Issues
  
An approach to segmentation of a solid focal lesion in breast and its peripheral areas in ultrasound images
  D.V. Pasynkov 1,2,3, А.А. Kolchev 2, I.A. Egoshin 1,2, I.V. Klioushkin 4, О.О. Pasynkova 1
  1 Mari State University, Ministry of Education and Science of Russian Federation,
     424000, Yoshkar-Ola, Russia, Lenin square 1;
  2 Kazan (Volga region) Federal University, Ministry of Education and Science of Russian Federation,
     420008, Kazan, Russia, Kremlevskaya St. 18;
  3 Kazan State Medical Academy - Branch Campus of the Federal State Budgetary Educational Institution of Further
     Professional Education «Russian Medical Academy of Continuous Pro-fessional Education», Ministry of Healthcare
     of the Russian Federation, 420012, Kazan, Russia, Butlerova St. 36;
  4 Kazan Medical University, Ministry of Health of Russian Federation, 420012, Kazan, Russia, Butlerova St. 49
 PDF, 1838 kB
  PDF, 1838 kB
DOI: 10.18287/2412-6179-CO-1234
Pages: 407-414.
Full text of article: Russian language.
 
Abstract:
The paper proposes an  approach to the segmentation of solid breast lesions and their peripheral areas  in ultrasound images. It is noted that identifying the  outermost breast lesion structures is an important step for the further lesion  classification, directly affecting the final classification of its type. The  main feature of the proposed approach is that its implementation takes into  account peculiarities of  pixel brightness variations in the original image, without using speckle noise  filters. The method was tested on a set of ultrasound images of morphologically  verified 42 benign and 49 malignant breast lesions marked by a radiologist. The  segmentation results were compared with the results of manual marking performed  by the radiologist. The average errors in the segmentation of benign and  malignant lesion were 5 pixels – for the lesion area and 7 pixels – for the peripheral  area, which is insignificant, taking into account the error of manual marking  performed by radiologist (3.9 and 4.7 pixels, respectively). The average  intersection-over-union (IoU) metrics were 0.82 and 0.80, respectively. The  presented results indicate the possibility of using the developed technology in  a combination with the system of lesion differentiation.
Keywords:
segmentation, lesion  contouring, ultrasound image, image processing.
Citation:
  Pasynkov DV, Kolchev AA, Egoshin IA, Klioushkin IV, Pasynkova OO. An approach to segmentation of a solid focal lesion in breast and its peripheral areas in ultrasound images. Computer Optics 2023; 47(3): 407-414. DOI: 10.18287/2412-6179-CO-1234.
Acknowledgements:
  The main results of sections "Materials and methods" and "Results" were obtained by D.V. Pasynkov and I.A. Egoshin with funding from a grant of the Russian Science Foundation (Project 22-71-10070, https://rscf.ru/en/project/22-71-10070/). The authors are grateful to the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030) for granting the technical feasibility of using the hardware and software.
References:
  - Sung H, Ferlay J,  Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics  2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in  185 countries. CA Cancer J Clin 2021; 71(3): 209-249. DOI: 10.3322/caac.21660.
- Kaprina AD,  Starinskogo VV, Shahzadovoj AO. The state of oncological care for the  population of Russia  in 2021 [In Russian]. Moscow:  Publisher of MNIOI imeni P.A. Gercena, filial FGBU «NMIC radiologii» Minzdrava  Rossii; 2022. DOI: 10.37469/0507-3758-2022-68-1-38-47. 
 
- Rozhkova NI, Burdina II,  Zapirova SB, Labazanova PG, Mazo ML, Mikushin SY, Prokopenko SP, Jacobs OE. Diversity  of non-palpable breast cancer. Timely diagnosis, adequate treatment and  prevention [In Russian]. Medical Alphabet 2020; (38): 34-40. DOI:  10.33667/2078-5631-2020-38-34-40.
 
- Guo R, Lu G, Qin B, Fei B.  Ultrasound imaging technologies for breast cancer detec-tion and management: A  review. Ultrasound Med Biol 2018; 44(1): 37-70. DOI:  10.1016/j.ultrasmedbio.2017.09.012.
 
- Krizmanich-Conniff KM, Paramagul  C, Patterson SK, Helvie MA, Roubidoux MA, Myles JD, Jiang K, Sabel M. Triple  receptor–negative breast cancer: Imaging and clinical characteristics. AJR Am J  Roentgenol 2012; 199(2):  458-464. DOI:  10.2214/AJR.10.6096.
 
- Klimonda Z, Karwat P,  Dobruch-Sobczak K, Piotrzkowska-Wroblewska H, Litniewski J. Breast-lesions characterization  using Quantitative Ultrasound features of peritumoral tissue. Sci Rep 2019;  9(1): 7963. DOI: 10.1038/s41598-019-44376-z.
 
- Bahareh B, Hamze R, Tehrani Ali  KZ, Hassan R. Deep classification of breast cancer in ultrasound images: more  classes, better results with multi-task learning. Proc SPIE 2021; 11602:  116020S. DOI: 10.1117/12.2581930.
 
- Nemat H, Fehri H, Ahmadinejad N,  Frangi AF, Gooya A. Classification of breast le-sions in ultrasonography using  sparse logistic regression and morphology-based texture features. Med Phys  2018; 45(9): 4112-4124. DOI: 10.1002/mp.13082.
 
- Yap MH, Edirisinghe EA, Bez HE.  A novel algorithm for initial lesion detection in ultrasound breast images. J  Appl Clin Med Phys 2008; 9(4): 181-199. DOI: 10.1120/jacmp.v9i4.2741.
 
- Shan J, Cheng HD, Wang YX.  Completely automated segmentation approach for breast ultrasound images using  multiple-domain features. Ultrasound Med Biol 2012; 38(2): 262-275. DOI:  10.1016/j.ultrasmedbio.2011.10.022.
 
- Kwak JI, Kim SH, Kim NC.  RD-based seeded region growing for extraction of breast tumor in an ultrasound  volume. In Book: Hao Y, Liu J, Wang Y, Cheung Y-m, Yin H, Jiao L, Ma J, Jiao  Y-C, eds. International conference on computational and information science. Berlin, Germany:  Springer; 2005: 799-808. DOI: 10.1007/11596448_118.
 
- Huang YL, Chen DR. Watershed segmentation for breast tumor in 2-D  sonography. Ultrasound Med Biol 2004; 30(5): 625-632. DOI:  10.1016/j.ultrasmedbio.2003.12.001.
 
- Zhang M, Zhang L, Cheng HD.  Segmentation of ultrasound breast images based on a neutrosophic method. Opt  Eng 2010; 49(11): 117001-117012. DOI: 10.1117/1.3505854.
 
- Shen X, Ma H, Liu R, Hong L, Jiachuan H, Xinran W. Lesion  segmentation in breast ultrasound images using the optimized marked watershed  method. BioMed Eng OnLine 2021; 20(1): 57. DOI:  10.1186/s12938-021-00891-7.
 
- Xu Y. A modified spatial fuzzy  clustering method based on texture analysis for ultrasound image segmentation.  IEEE Int Symposium on Industrial Electronics 2009: 746-751. DOI:  10.1109/ISIE.2009.5213933.
 
- Liu B, Cheng H, Huang J, Tian J,  Tang X, Liu J. Fully automatic and segmentation-robust classification of breast  tumors based on local texture analysis of ultrasound images. Pattern Recognit  2010; 43(1): 280-298. DOI: 10.1016/j.patcog.2009.06.002.
 
- Huang K, Cheng H, Zhang Y, Zhang  B, Xing P, Ning C. Medical knowledge constrained semantic breast ultrasound  image segmentation. Proc 2018 24th Int Conf on Pattern Recognition (ICPR) 2018:  1193-1198. DOI: 10.1109/ICPR.2018.8545272.
 
- Shareef B, Xian M, Vakanski A.  STAN: Small tumor-aware network for breast ultrasound image segmentation. Proc  IEEE Int Symposium on Biomedical Imaging 2020: 1469-1473. DOI:  10.1109/isbi45749.2020.9098691.
 
- Egoshin IA, Pasynkov DV, Pasynkova OO, Kolchev AA, Kliouchkin IV.  Segmentation of breast focal lesions on the ultrasound image. Biomed Eng 2020;  54(2): 99-103. DOI: 10.1007/s10527-020-09982-6. 
 
- Drukker K, Giger ML, Horsch K, Kupinski MA, Vyborny CJ, Mendelson EB.  Computerized lesion detection on breast ultrasound. Med Phys 2002; 29(7):  1438-1446. DOI: 10.1118/1.1485995.
 
- Ikedo Y, Fukuoka D, Hara T, Fujita H, Takada E, Endo T, Morita T.  Development of a fully automatic scheme for detection of masses in whole breast  ultrasound images. Med Phys 2007; 34(11): 4378-4388. DOI: 10.1118/1.2795825. 
 
- Pons G, Marti R, Ganau S, Sentis M, Marti J. Feasibility study of  lesion detection using deformable part models in breast ultrasound images. In  Book: Sanches JM, Micó L, Cardoso JS, eds. Pattern recognition and image  analysis. Berlin, Heidelberg: Springer-Verlag; 2013: 269-276. DOI:  10.1007/978-3-642-38628-2_32.
 
- Agafonova YuD, Gaidel AV, Zelter  PM, Kapishnikov AV. Efficiency of machine learning algorithms and convolutional  neural network for detection of pathological changes in MR images of the brain.  Computer Optics 2020; 44(2): 266-273. DOI:  10.18287/2412-6179-CO-671. 
 
- Vinokurov VO, Matveeva IA,  Khristoforova YA, Myakinin OO, Bratchenko IA, Bratchenko LA, Moryatov AA,  Kozlov SG, Machikhin AS, Abdulhalim I, Zakharov VP. Neural network classifier  of hyperspectral images of skin pathologies. Computer Optics 2021; 45(6):  879-886. DOI: 10.18287/2412-6179-CO-832.
 
- Yap MH, Goyal MO, Fatima M, Marti R, Denton E, Juette A,  Zwiggelaar R. Breast ultrasound region of interest detection and lesion  localisation. Artif Intell Med 2020; 107: 101880. DOI: 101880.  10.1016/j.artmed.2020.101880. 
 
- Kapoor A,  Singh T. A brief review: Speckle reducing filtering for ultrasound images. International Conference  on I-SMAC (IoT in Social, Mobile,  Analytics and Cloud) (I-SMAC) 2017: 242-246. DOI: 10.1109/I-SMAC.2017.8058347. 
 
- Niblack W. An introduction to  digital image processing. Englewood  Cliffs, NJ: Prentice-Hall; 1986. ISBN: 978-0-13-480674-7.     
    
- Kriti, Virmani J, Agarwal R. A review of  segmentation algorithms applied to B-mode breast ultrasound images: A characterization  approach. Arch Computat Methods Eng 2021;  28: 2567-2606. DOI: 10.1007/s11831-020-09469-3.
      
      
    
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20