(47-3) 09 * << * >> * Russian * English * Content * All Issues

An approach to segmentation of a solid focal lesion in breast and its peripheral areas in ultrasound images
D.V. Pasynkov 1,2,3, А.А. Kolchev 2, I.A. Egoshin 1,2, I.V. Klioushkin 4, О.О. Pasynkova 1

Mari State University, Ministry of Education and Science of Russian Federation,
424000, Yoshkar-Ola, Russia, Lenin square 1;
Kazan (Volga region) Federal University, Ministry of Education and Science of Russian Federation,
420008, Kazan, Russia, Kremlevskaya St. 18;
Kazan State Medical Academy - Branch Campus of the Federal State Budgetary Educational Institution of Further
Professional Education «Russian Medical Academy of Continuous Pro-fessional Education», Ministry of Healthcare
of the Russian Federation, 420012, Kazan, Russia, Butlerova St. 36;
Kazan Medical University, Ministry of Health of Russian Federation, 420012, Kazan, Russia, Butlerova St. 49

 PDF, 1838 kB

DOI: 10.18287/2412-6179-CO-1234

Pages: 407-414.

Full text of article: Russian language.

Abstract:
The paper proposes an approach to the segmentation of solid breast lesions and their peripheral areas in ultrasound images. It is noted that identifying the outermost breast lesion structures is an important step for the further lesion classification, directly affecting the final classification of its type. The main feature of the proposed approach is that its implementation takes into account peculiarities of pixel brightness variations in the original image, without using speckle noise filters. The method was tested on a set of ultrasound images of morphologically verified 42 benign and 49 malignant breast lesions marked by a radiologist. The segmentation results were compared with the results of manual marking performed by the radiologist. The average errors in the segmentation of benign and malignant lesion were 5 pixels – for the lesion area and 7 pixels – for the peripheral area, which is insignificant, taking into account the error of manual marking performed by radiologist (3.9 and 4.7 pixels, respectively). The average intersection-over-union (IoU) metrics were 0.82 and 0.80, respectively. The presented results indicate the possibility of using the developed technology in a combination with the system of lesion differentiation.

Keywords:
segmentation, lesion contouring, ultrasound image, image processing.

Citation:
Pasynkov DV, Kolchev AA, Egoshin IA, Klioushkin IV, Pasynkova OO. An approach to segmentation of a solid focal lesion in breast and its peripheral areas in ultrasound images. Computer Optics 2023; 47(3): 407-414. DOI: 10.18287/2412-6179-CO-1234.

Acknowledgements:
The main results of sections "Materials and methods" and "Results" were obtained by D.V. Pasynkov and I.A. Egoshin with funding from a grant of the Russian Science Foundation (Project 22-71-10070, https://rscf.ru/en/project/22-71-10070/). The authors are grateful to the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030) for granting the technical feasibility of using the hardware and software.

References:

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-249. DOI: 10.3322/caac.21660.
  2. Kaprina AD, Starinskogo VV, Shahzadovoj AO. The state of oncological care for the population of Russia in 2021 [In Russian]. Moscow: Publisher of MNIOI imeni P.A. Gercena, filial FGBU «NMIC radiologii» Minzdrava Rossii; 2022. DOI: 10.37469/0507-3758-2022-68-1-38-47.
  3. Rozhkova NI, Burdina II, Zapirova SB, Labazanova PG, Mazo ML, Mikushin SY, Prokopenko SP, Jacobs OE. Diversity of non-palpable breast cancer. Timely diagnosis, adequate treatment and prevention [In Russian]. Medical Alphabet 2020; (38): 34-40. DOI: 10.33667/2078-5631-2020-38-34-40.
  4. Guo R, Lu G, Qin B, Fei B. Ultrasound imaging technologies for breast cancer detec-tion and management: A review. Ultrasound Med Biol 2018; 44(1): 37-70. DOI: 10.1016/j.ultrasmedbio.2017.09.012.
  5. Krizmanich-Conniff KM, Paramagul C, Patterson SK, Helvie MA, Roubidoux MA, Myles JD, Jiang K, Sabel M. Triple receptor–negative breast cancer: Imaging and clinical characteristics. AJR Am J Roentgenol 2012; 199(2):  458-464. DOI: 10.2214/AJR.10.6096.
  6. Klimonda Z, Karwat P, Dobruch-Sobczak K, Piotrzkowska-Wroblewska H, Litniewski J. Breast-lesions characterization using Quantitative Ultrasound features of peritumoral tissue. Sci Rep 2019; 9(1): 7963. DOI: 10.1038/s41598-019-44376-z.
  7. Bahareh B, Hamze R, Tehrani Ali KZ, Hassan R. Deep classification of breast cancer in ultrasound images: more classes, better results with multi-task learning. Proc SPIE 2021; 11602: 116020S. DOI: 10.1117/12.2581930.
  8. Nemat H, Fehri H, Ahmadinejad N, Frangi AF, Gooya A. Classification of breast le-sions in ultrasonography using sparse logistic regression and morphology-based texture features. Med Phys 2018; 45(9): 4112-4124. DOI: 10.1002/mp.13082.
  9. Yap MH, Edirisinghe EA, Bez HE. A novel algorithm for initial lesion detection in ultrasound breast images. J Appl Clin Med Phys 2008; 9(4): 181-199. DOI: 10.1120/jacmp.v9i4.2741.
  10. Shan J, Cheng HD, Wang YX. Completely automated segmentation approach for breast ultrasound images using multiple-domain features. Ultrasound Med Biol 2012; 38(2): 262-275. DOI: 10.1016/j.ultrasmedbio.2011.10.022.
  11. Kwak JI, Kim SH, Kim NC. RD-based seeded region growing for extraction of breast tumor in an ultrasound volume. In Book: Hao Y, Liu J, Wang Y, Cheung Y-m, Yin H, Jiao L, Ma J, Jiao Y-C, eds. International conference on computational and information science. Berlin, Germany: Springer; 2005: 799-808. DOI: 10.1007/11596448_118.
  12. Huang YL, Chen DR. Watershed segmentation for breast tumor in 2-D sonography. Ultrasound Med Biol 2004; 30(5): 625-632. DOI: 10.1016/j.ultrasmedbio.2003.12.001.
  13. Zhang M, Zhang L, Cheng HD. Segmentation of ultrasound breast images based on a neutrosophic method. Opt Eng 2010; 49(11): 117001-117012. DOI: 10.1117/1.3505854.
  14. Shen X, Ma H, Liu R, Hong L, Jiachuan H, Xinran W. Lesion segmentation in breast ultrasound images using the optimized marked watershed method. BioMed Eng OnLine 2021; 20(1): 57. DOI: 10.1186/s12938-021-00891-7.
  15. Xu Y. A modified spatial fuzzy clustering method based on texture analysis for ultrasound image segmentation. IEEE Int Symposium on Industrial Electronics 2009: 746-751. DOI: 10.1109/ISIE.2009.5213933.
  16. Liu B, Cheng H, Huang J, Tian J, Tang X, Liu J. Fully automatic and segmentation-robust classification of breast tumors based on local texture analysis of ultrasound images. Pattern Recognit 2010; 43(1): 280-298. DOI: 10.1016/j.patcog.2009.06.002.
  17. Huang K, Cheng H, Zhang Y, Zhang B, Xing P, Ning C. Medical knowledge constrained semantic breast ultrasound image segmentation. Proc 2018 24th Int Conf on Pattern Recognition (ICPR) 2018: 1193-1198. DOI: 10.1109/ICPR.2018.8545272.
  18. Shareef B, Xian M, Vakanski A. STAN: Small tumor-aware network for breast ultrasound image segmentation. Proc IEEE Int Symposium on Biomedical Imaging 2020: 1469-1473. DOI: 10.1109/isbi45749.2020.9098691.
  19. Egoshin IA, Pasynkov DV, Pasynkova OO, Kolchev AA, Kliouchkin IV. Segmentation of breast focal lesions on the ultrasound image. Biomed Eng 2020; 54(2): 99-103. DOI: 10.1007/s10527-020-09982-6.
  20. Drukker K, Giger ML, Horsch K, Kupinski MA, Vyborny CJ, Mendelson EB. Computerized lesion detection on breast ultrasound. Med Phys 2002; 29(7): 1438-1446. DOI: 10.1118/1.1485995.
  21. Ikedo Y, Fukuoka D, Hara T, Fujita H, Takada E, Endo T, Morita T. Development of a fully automatic scheme for detection of masses in whole breast ultrasound images. Med Phys 2007; 34(11): 4378-4388. DOI: 10.1118/1.2795825.
  22. Pons G, Marti R, Ganau S, Sentis M, Marti J. Feasibility study of lesion detection using deformable part models in breast ultrasound images. In Book: Sanches JM, Micó L, Cardoso JS, eds. Pattern recognition and image analysis. Berlin, Heidelberg: Springer-Verlag; 2013: 269-276. DOI: 10.1007/978-3-642-38628-2_32.
  23. Agafonova YuD, Gaidel AV, Zelter PM, Kapishnikov AV. Efficiency of machine learning algorithms and convolutional neural network for detection of pathological changes in MR images of the brain. Computer Optics 2020; 44(2): 266-273. DOI: 10.18287/2412-6179-CO-671.
  24. Vinokurov VO, Matveeva IA, Khristoforova YA, Myakinin OO, Bratchenko IA, Bratchenko LA, Moryatov AA, Kozlov SG, Machikhin AS, Abdulhalim I, Zakharov VP. Neural network classifier of hyperspectral images of skin pathologies. Computer Optics 2021; 45(6): 879-886. DOI: 10.18287/2412-6179-CO-832.
  25. Yap MH, Goyal MO, Fatima M, Marti R, Denton E, Juette A, Zwiggelaar R. Breast ultrasound region of interest detection and lesion localisation. Artif Intell Med 2020; 107: 101880. DOI: 101880. 10.1016/j.artmed.2020.101880.
  26. Kapoor A, Singh T. A brief review: Speckle reducing filtering for ultrasound images. International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC) 2017: 242-246. DOI: 10.1109/I-SMAC.2017.8058347.
  27. Niblack W. An introduction to digital image processing. Englewood Cliffs, NJ: Prentice-Hall; 1986. ISBN: 978-0-13-480674-7.
  28. Kriti, Virmani J, Agarwal R. A review of segmentation algorithms applied to B-mode breast ultrasound images: A characterization approach. Arch Computat Methods Eng 2021; 28: 2567-2606. DOI: 10.1007/s11831-020-09469-3.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20