(47-4) 01 * << * >> * Russian * English * Content * All Issues
  
Current state of the research on optoacoustic fiber-optic ultrasonic transducers based on thermoelastic effect and fiber-optic interferometric receivers
 A.P. Mikitchuk 1, E.I. Girshova 2, V.V. Nikolaev 2
 1 Belarusian State University, 220030, Minsk, Belarus Niezaliezhnasci Avenue 4;
    2 Submicron Heterostructures for Microelectronics Research and Engineering Center of the RAS,
     194021, St Petersburg, Russia Politekhnicheskaya, 26
 
 PDF, 2795 kB
  PDF, 2795 kB
DOI: 10.18287/2412-6179-CO-1224
Pages: 503-523.
Full text of article: English language.
 
Abstract:
The work is devoted to an overview of the current state of optoacoustic fiber-optic ultrasonic transducers based on thermoelastic effect and fiber-optic interference receivers, its scope, technologies and materials used, the advantages and disadvantages of different methods and the prospects for the development of the industry.
Keywords:
optoacoustics, ultrasonic devices, optical fiber, optoacoustic reciever, optoacoustic transducer.
Citation:
  Mikitchuk AP, Girshova EI, Nikolaev VV. Current state of the research on optoacoustic fiber-optic ultrasonic transducers based on thermoelastic effect and fiber-optic interferometric receivers. Computer Optics 2023; 47(4): 503-523. DOI: 10.18287/2412-6179-CO-1224.
Acknowledgements:
  The work has been supported by the Russian Science Foundation 21-12-00304.
References:
  - Czichos H. Technical diagnostics: principles, methods, and applications. NCSLI Measure 2014; 9(2): 32-40.
 
- Worden K, et al. The fundamental axioms of structural health monitoring. Philos Trans Royal Soc A 2007; 463(2082): 1639-1664. 
 
- Sposito  G, et al. A review of non-destructive techniques for the detection of creep damage  in power plant steels. NDT E Int 2010; 43(7): 555-567.
 
- Hu  C, Yu Z, Wang A. An all fiber-optic multi-parameter structure health monitoring  system. Opt Express 2016; 24(18): 20287-20296.
 
- Li  W, Lan Z, Hu N, Deng M. Modeling and simulation of backward combined harmonic  generation induced by one-way mixing of longitudinal ultrasonic guided waves in  a circular pipe. Ultrasonics 2021; 113: 106356. DOI: 10.1016/j.ultras.2021.106356.
 
- Kim  S, Choi C, Cha Y, et al. The efficacy of convenient cleaning methods applicable  for customized abutments: an in vitro study. BMC Oral Health 2021; 21: 78. DOI:  10.1186/s12903-021-01436-z.
 
- Biagi  E, Margheri F, Menichelli D. Efficient laser-ultrasound generation by using  heavily absorbing films as targets. IEEE Trans Ultrason Ferroelectr Freq  Control 2001; 48(6): 1669-1679.
 
- Yang  H, et al. Characterization of а broadband all-optical ultrasound transducer –  from optical and acoustical properties to imaging. Appl Phys Lett 2007; 91:  073507.
 
- Yang  T. Surface plasmon cavities on optical fiber end-facets for biomolecule and  ultrasound detection. Opt Laser Technol 2018; 101: 468-478.
 
- Lyamshev  LM. Optoacoustic sources of sound. Sov Phys Usp 1981; 24: 977-995.
 
- Naugolnykh  KA, Ostrovsky LA.  Nonlinear wave processes in acoustics. Cambridge:  Cambridge University Press; 1998.
 
- Akhmanov  SA, Rudenko VZh. Parametric laser emitter of ultrasound [In Russian]. Jurnal  Tehnicheskoi Fiziki 1975; 1(15: 725-728.
 
- Martellucci  S. Analytical laser spectroscopy. Springer Science & Business Media; 2012.
 
- Stewart  RB, Diebold GJ. Radiation‐induced thermal noise in  optoacoustic detection cells. J Appl Phys 1984; 56: 1992-1996. DOI: 10.1063/1.334233.
 
- Werner JPF,  Mishra K, Huang Y, Vetschera P, Glasl S, Chmyrov A, Richter K, Ntziachristos V,  Stiel AC. Structure-based mutagenesis of phycobiliprotein smURFP for optoacoustic  imaging. ACS Chem Biol 2019; 14: 1896-1903.
 
- Yoshida  S, Adhikari S, Gomi K, Shrestha R, Huggett D, Miyasaka C, Park I. Opto-acoustic  technique to evaluate adhesion strength of thin-film systems. AIP Advances 2012;  2: 022126. DOI: 10.1063/1.4719698.
 
- Kostli  KP, Frauchiger D, Niederhauser JJ, Paltauf G, Weber HP, Frenz M. Optoacoustic  imaging using a three-dimensional reconstruction algorithm. IEEE J Sel Top  Quantum Electron 2001; 7(6): 918-923. DOI: 10.1109/2944.983294.
 
- Wu  N, et al. Fiber optic ultrasound transmitters and their applications.  Measurement 2016; 79: 164-171.
 
- Nishijima  Y, Rosa L, Juodkazis S. Surface plasmon resonances in periodic and random  patterns of gold nano-disks for broadband light harvesting. Opt Express 2012;  20(10): 11466-11477.
 
- Tian  Y, et al. Numerical simulation of gold nanostructure absorption efficiency for  fiber-optic optoacoustic generation. Prog Electromagn Res Lett 2013; 42: 209-223.
 
- Gaponenko  SV. Introduction to nanophotonics. Cambridge: Cambridge University Press; 2010.
 
- Baranov  AV, et al. Technique of physical experiment in systems with reduced dimension  [In Russian]. Saint-Petersburg: “SPbGU ITMO” Publisher; 2009.
 
- Hutter  E, Fendler JH. Exploitation of localized surface plasmon resonance. Adv Mater  2006; 16: 1685-1706.
 
- Lakowicz  JR, et al. Plasmon-controlled fluorescence: a new detection technology. Proc  SPIE 2006; 6099: 609909.
 
- Noguez  C. Surface plasmons on metal nanoparticles: the influence of shape and physical  environment. J Phys Chem C 2007; 111: 3806-3819.
 
- Sekhon  JS, Verma SS. Refractive index sensitivity analysis of Ag, Au, and Cu  nanoparticles. Plasmonics 2011; 6: 311-317.
 
- Hutter  TS, Elliott R, Mahajan S. Interaction of metallic nanoparticles with dielectric  substrates: effect of optical constants. Nanotechnology 2013; 24: 035201.
 
- Rivero  PJ, Goicoechea J, Arregui FJ. Localized surface plasmon resonance for optical  fiber-sensing applications. In Book: Barbillon G, ed. Nanoplasmonics – Fundamentals  and applications. IntechOpen; 2017: 399-429.
 
- Singh  CD, Shibata Y, Ogita M. A theoretical study of tapered, porous clad optical  fibers for detection of gases. Sens Actuators B Chem 2003; 92: 44-48.
 
- Zhou J, et al.  Water temperature measurement using а novel fiber optic ultrasound transducer  system. 2015 IEEE Int Conf on Information and Automation 2015: 2316-2319.
 
- Yang  L. Miniaturized fiber optic ultrasound sensor with multiplexing for  photoacoustic imaging. Photoacoustics 2022; 28: 100421.
 
- Bi  S. Ultrasonic transmission from fiber optic generators on steel plate. Proc SPIE  2016; 9804: 98040Q.
 
- Du  C. All-optical optoacoustic sensors for steel rebar corrosion monitoring.  Sensors 2018; 18(5): 1353-1365.
 
- Zhou  J, et al. High temperature monitoring using а novel fiber optic ultrasonic  sensing system. Proc SPIE 2018; 10639: 1063910.
 
- Jensen  JA. Medical ultrasound imaging. Prog Biophys Mol Biol 2007; 93: 153-165.
 
- Nelson  TR, Pretorius TH. Three-dimensional ultrasound imaging. Ultrasound Med Biol  1998; 24(9): 1243-1270.
 
- von  Haxthausen F, Böttger S, Wulff D, et al. Medical robotics for ultrasound imaging:  Current systems and future trends. Curr Robot Rep 2021; 2: 55-71.
 
- Yu  Y, Safari A, Niu X, Drinkwater B, Horoshenkov KV. Acoustic and ultrasonic  techniques for defect detection and condition monitoring in water and sewerage  pipes: A review. Appl Acoust 2021; 183: 108282.
 
- Bombarda  D, Vitetta GM, Ferrante G. Rail diagnostics based on ultrasonic guided waves:  An overview. Appl Sci 2021; 11(3): 1071.
 
- Liu  S, Sun Y, Jiang X, et al. A review of wire rope detection methods, sensors and  signal processing techniques. J Nondestr Eval 2020; 39: 85.
 
- Mangalgiri  PD. Corrosion issues in structural health monitoring of aircraft. ISSS J Micro  Smart Syst 2019; 8: 49-78.
 
- Stras  B, Conrad C, Walter B. Production integrated nondestructive testing of  composite materials and material compounds – an  overview. IOP Conference Series: Materials Science and Engineering 2017; 181:  12017.
 
- Vavilov  VP. Thermal nondestructive testing of materials and products: a review. Russ J  Nondestruct Test 2017; 53: 707-730.
 
- Toh  N, Akagi T, Kasahara S, et al. Evolution of echocardiography in adult congenital heart disease: from  pulsed-wave Doppler to fusion imaging. J Echocardiogr 2021; 19: 205-211.
 
- Takaya  Y, Ito H. New horizon of fusion imaging using echocardiography: its progress in  the diagnosis and treatment of cardiovascular disease. J Echocardiogr 2020; 18:  9-15.
 
- Meola  M, Ibeas J, Lasalle G, Petrucci I. Basics for performing a high-quality color  Doppler sonography of the vascular access. J Vasc Access 2021; 22(1): 18-31.
 
- Martin  KH, Dayton PA. Current status and prospects for  microbubbles in ultrasound theranostics. WIREs Nanomed Nanobiotechnol 2017; 5: 329-345.
 
- Dasgupta  A, Liu M, Ojha T, Storm G, Kiessling F, Lammers T. Ultrasound-mediated drug  delivery to the brain: principles, progress and prospects. Drug Discovery Today:  Technologies 2016; 20: 41-48.
 
- Duric  N, Littrup P, Poulo L, Babkin A, Pevzner R, Holsapple E, Rama O, Glide C.  Detection of breast cancer with ultrasound tomography: First results with the  Computed Ultrasound Risk Evaluation (CURE) prototype. Med Phys 2007; 34:  773-785.
 
- Mahmud  M, Islam MS, Ahmed A, Younis M, Choa F-S. Cross-medium optoacoustic  communications: challenges, and state of the art. Sensors 2022; 22(11): 4224. DOI:  10.3390/s22114224.
 
- Ji  Z, Fu Y, Li J, Zhao Z, Mai W. Optoacoustic communication from the air to  underwater based on low-cost passive relays. in IEEE Commun Mag 2021; 59(1):  140-143. DOI: 10.1109/MCOM.001.2000607.
 
- Sullenberger  RM, Kaushik S, Wynn CM. Optoacoustic  communications: delivering audible signals via absorption of light by  atmospheric H2O. Opt Lett 2019; 44: 622-625.
 
- Schmid,  T. Optoacoustic spectroscopy for process analysis. Anal Bioanal Chem 2006; 384:  1071-1086. DOI: 10.1007/s00216-005-3281-6.
 
- Holthoff  EL, Heaps DA, Pellegrino PM. Development of a MEMS-scale optoacoustic chemical  sensor using a quantum cascade laser. IEEE Sensors J 2010; 10(3): 572-577. DOI:  10.1109/JSEN.2009.2038665.
 
- Mothé  G, Castro M, Sthel M, Lima G, Brasil L, Campos L, Rocha A, Vargas  H. Detection of greenhouse gas precursors from diesel engines using  electrochemical and optoacoustic sensors. Sensors 2010; 10(11): 9726-9741. DOI:  10.3390/s101109726.
 
- Elia  A, Di Franco C, Lugarà PM, Scamarcio G. Optoacoustic spectroscopy with quantum  cascade lasers for trace gas detection. Sensors 2006; 6(10): 1411-1419. DOI: 10.3390/s6101411.
 
- Zharov  VP, Galanzha EI MD, Shashkov EV, Kim J-W, Khlebtsov NG, Tuchin VV. Optoacoustic  flow cytometry: principle and application for real-time detection of circulating  single nanoparticles, pathogens, and contrast dyes in vivo. J Biomed Opt 2007;  12(5): 051503.
 
- Johnson  S, Proctor M, Bluth E, Smetherman D, Baumgarten K, Troxclair L, Bienvenu M. Evaluation  of a hydrogen peroxide-based system for high-level disinfection of vaginal  ultrasound probes. J Ultrasound Med 2013; 32: 1799-1804. DOI: 10.7863/ultra.32.10.1799.
 
- Lazarotto  JS, Júnior EPM, Medeiros RC, et al. Sanitary sewage disinfection with ultraviolet  radiation and ultrasound. Int J Environ Sci Technol 2021; 19, 11531-11538. DOI:  10.1007/s13762-021-03764-7.
 
- Khaire  RA, Thorat BN, Gogate PR. Applications of ultrasound for food preservation and  disinfection: A critical review. J Food Process Preserv 2021; 46(10): e16091. DOI:  10.1111/jfpp.16091.
 
- Jatzwauk  L, Schöne H, Pietsch H. How to improve instrument disinfection by ultrasound. J  Hosp Infect 2001; 48(A): S80-S83. DOI: 10.1016/S0195-6701(01)90019-2.
 
- Winkler  AM, Maslov K, Wang LV. Noise-equivalent  sensitivity of photoacoustics. J Biomed Opt 2013; 18(9): 97003.
 
- Kim  KH, et al. Air-coupled ultrasound detection using capillary-based optical ring  resonators. Sci Rep 2017; 7: 109.
 
- Wissmeyer  G, et al. Looking at sound: optoacoustics with all-optical ultrasound detection.  Light Sci Appl 2018; 7: 53.
 
- Liang  Y. Fiber-laser-based ultrasound sensor for photoacoustic imaging. Sci Rep 2017;  7: 40849.
 
- Zhou  J. High temperature monitoring using а novel fiber optic ultrasonic sensing  system. Proc SPIE 2018; 10639: 1063910.
 
- Dong  B, Sun C, Zhang H. Optical detection of ultrasound in photoacoustic imaging. IEEE  Trans Biomed Eng 2017; 64(1): 4-15.
 
- Zhou  QF, et al. Piezoelectric films for high frequency ultrasonic transducers in  biomedical applications. Prog Mater Sci 2011;  56: 139-174.
 
- Li  X, et al. 80-MHz intravascular ultrasound transducer using PMN-PT free-standing  film. IEEE Trans Ultrason Ferroelectr Freq Control 2011; 58: 2281-2288.
 
- Niederhauser  JJ, et al. Transparent ITO coated PVDF transducer for optoacoustic depth  profiling. Opt Commun 2005; 253: 401-406.
 
- Rousseau  G, et al. Non-contact biomedical photoacoustic and ultrasound imaging. J Biomed  Opt 2012; 17: 61217.
 
- Nuster  R, et al. Downstream Fabry-Perot interferometer for acoustic wave monitoring in  photoacoustic tomography. Opt Lett 2011; 36: 981-983.
 
- Beard  PC, et al. Transduction mechanisms of the Fabry-Perot polymer film sensing concept  for wideband ultrasound detection. IEEE Trans Ultrason Ferroelectr Freq Control  1999; 46: 1575-1582.
 
- Beard  PC, Mills TN. An optical detection system for biomedical photoacoustic imaging.  Proc SPIE 2000; 3916: 100-109.
 
- Grun  H, et al. Polymer fiber detectors for photoacoustic imaging. Proc SPIE 2010;  7564: 75640M.
 
- Rosenthal  A, et al. Wideband optical sensing using pulse interferometry. Opt Express 2012;  20: 19016-19029.
 
- Sheaff  C, Ashkenazi S. A fiber optic optoacoustic ultrasound sensor for photoacoustic endoscopy.  Proc Ultrasonics Symp 2010: 2135-2138.
 
- Govindan  V, Ashkenazi S. Bragg waveguide ultrasound detectors. IEEE Trans Ultrason Ferroelectr Freq Control 2012; 59:  2304-2311.
 
- Chao  CY, et al. High-frequency ultrasound sensors using polymer microring resonators.  IEEE Trans Ultrason Ferroelectr Freq Control 2007; 54: 957-965.
 
- Ling  T, et al. Fabrication and characterization of high Q polymer micro-ring  resonator and its application as a sensitive ultrasonic detector. Opt Express 2011;  19: 861-869.
 
- Scruby  CB, Drain LE. Laser ultrasonics techniques and applications. New York: CRC Press; 1990.
 
- Gusev  V, Karabutov A. Laser optoacoustics. NASA STI/Recon Technical Report A 1991; 93:  16842.
 
- Girshova  EI, Mikitchuk AP, Belonovski AV, Morozov KM, Ivanov KA, Pozina G, Kozadaev KV,  Egorov AYu, Kaliteevski MA. Proposal for a photoacoustic ultrasonic generator  based on Tamm plasmon structures. Opt Express 2020; 28: 26161-26169. DOI: 10.1364/OE.400639.
 
- Ling  T, et al. Fabrication and characterization of high Q polymer micro-ring  resonator and its application as a sensitive ultrasonic detector. Opt Express  2011; 19: 861-869.
 
- Zhigarkov  VS, Yusupov VI. Impulse pressure in laser printing with gel microdroplets. Opt  Laser Technol 2021; 137: 106806. DOI: 10.1016/j.optlastec.2020.106806.
 
- Kozhushko  VV, Hess P. Nondestructive evaluation of microcracks by laser-induced focused  ultrasound. Appl Phys Lett 2007; 91: 224107.
 
- Baac  HW, et al. Photoacoustic concave transmitter for generating high frequency  focused ultrasound. Proc SPIE 2010; 7564: 116-121.
 
- Passler  K, et al. Laser-generation of ultrasonic X-waves using axicon transducers. Appl  Phys Lett 2009; 94: 64108.
 
- Baac  HW, et al. Carbon-nanotube optoacoustic lens for focused ultrasound generation  and high-precision targeted therapy. Sci Rep 2012; 2: 989-997.
 
- Chan  W, Hies T, Ohl CD. Laser-generated  focused ultrasound for arbitrary waveforms. Appl Phys Lett 2016; 109: 174102.
 
- Hou  Y, et al. Improvements in optical generation of high-frequency ultrasound. IEEE  Trans Ultrason Ferroelectr Freq Control 2007; 54: 682-686.
 
- Lee  SH. Reduced graphene oxide coated thin aluminum film as an optoacoustic  transmitter for high pressure and high frequency ultrasound generation. Appl Phys  Lett 2012; 101: 241909.
 
- Hou  Y, et al. Optical generation of high frequency ultrasound using two-dimensional  gold nanostructure. Appl Phys Lett 2006; 89: 93901.
 
- Zou  X, et. al. Polydimethylsiloxane thin film characterization using all-optical  photoacoustic mechanism. Appl Opt 2013; 52(25): 6239-6244.
 
- Hsieh  BY, et al. A laser ultrasound transducer using carbon  nanofibers–polydimethylsiloxane composite thin film. Appl Phys Lett 2015; 106:  21902.
 
- Chang WY, et al. Candle soot  nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers.  Appl Phys Lett 2015; 107: 161903.
 
- Biagi  E, et al. Fiber optic broadband ultrasonic probe. 2009 IEEE Int Ultrasonics  Symp 2009: 363-366.
 
- Colchester  RJ, et al. Laser-generated ultrasound with optical fibres using functionalised  carbon nanotube composite coatings. Appl Phys Lett 2014; 104: 173502.
 
- Colchester  RJ, et al. Broadband miniature optical ultrasound probe for high resolution  vascular tissue imaging. Biomed Opt Express 2015; 6: 1502-1511.
 
- Wu  N, et. al. Fiber optics photoacoustic generation using gold nanoparticles as  target. Proc SPIE 2011; 7981: 798118.
 
- Wu  N, et al. Study of the compact fiber optic photoacoustic ultrasonic transducer.  Proc SPIE 2012; 8345: 83453Z.
 
- Tian Y. Numerical simulation of  fiber-optic photoacoustic generator using nanocomposite material. J Comput Acoust  2013; 21: 1350002.
 
- Tian Y, et. al. Fiber-optic  ultrasound generator using periodic gold nanopores fabricated by а focused ion  beam. Opt Eng 2013; 52(6): 65005.
 
- Wu N, et al. Fiber optic  photoacoustic ultrasound generator based on gold nanocomposite. Proc SPIE 2013;  8694: 86940Q.
 
- Zou X, et al. Broadband miniature  fiber optic ultrasound generator. Opt Express 2014; 22(15): 18119-18127.
 
- Lee J, Zaigham SB, Paeng D-G. Shock wave characterization using  different diameters of an optoacoustic carbon nanotube composite transducer.  Appl Sci 2022; 12: 7300. DOI: 10.3390/app12147300.
 
- Shi L, Jiang Y, Fernandez FR, et al. Non-genetic photoacoustic  stimulation of single neurons by a tapered fiber optoacoustic emitter. Light  Sci Appl 2021; 10: 143. DOI: 10.1038/s41377-021-00580-z.
 
- Jiang Y. High precision optoacoustic  neural modulation. Doctoral dissertation. Boston University;  2021.
 
- Du X, Li J, Niu G, et al. Lead halide perovskite for efficient  optoacoustic conversion and application toward high-resolution ultrasound  imaging. Nat Commun 2021; 12: 3348. DOI: 10.1038/s41467-021-23788-4.
 
- Hu X, Ma Y, Wan Q, Ying K-N, Dai L-N,  Hu Z, Chen F, Guan F, Ni C, Guo LB. Laser ultrasonic improvement and its  application in defect detection based on the composite coating method. Appl Opt  2022; 61: 4145-4152.
 
- Girshova EI, Mikitchuk EP,  Belonovskii AV, et al. An optoacoustic ultrasound generator based on a tamm plasmon  and organic active layer structure. Tech Phys Lett 2021; 47: 336-340. DOI: 10.1134/S1063785021040076.
 
- Liu S, Kim H, Huang W, Chang W-Y,  Jiang X, Ryu JE. Multiscale and multiphysics FEA simulation and materials  optimization for laser ultrasound transducers. Mater Today Commun 2022; 31:  10359. DOI: 10.1016/j.mtcomm.2022.103599.
 
- Girshova EI,  Ogurtcov AV, Belonovski AV, Morozov KM, Kaliteevski MA. Genetic algorithm for  optimizing Bragg and hybrid metal-dielectric reflectors. Computer Optics 2022;  46(4): 561-566. DOI: 10.18287/2412-6179-CO-1128.
 
- Weiland T. RF & microwave  simulators – from component to system design. 33rd European Microwave Conf Proc  2003; 2: 591-596.
 
- Moreno F, Saiz  JM, Gonzalez F. Light scattering by particles on substrates. theory and  experiments–nanostructure science and technology. New York: Springer; 2007: 305-340.
 
- Saleh BEA, Teich MC. Fundamentals of  Photonics. John Wiley & Sons Inc; 1991.
 
- Ghaforyan H, Ebrahimzadeh M, Bilankohi SM.  Study of the optical  properties of nanoparticles using Mie theory. World Appl Program 2015; 5(4): 79-82.
 
- Fabelinskii IL. Molecular scattering of light. New York: Plenum Press;  1968.
 
- Lindell IV, et al. Exact-image  theory formulation. J Opt Soc Am A 1991; 8: 472-476.
 
- Dmitriev A. Nanoplasmonic sensors. New York: Springer;  2012.
 
- Sonnichsen C, et al. Drastic  reduction of plasmon damping in gold nanorods. Phys Rev Lett 2002; 88(4):  077402.
 
- Petryayeva E, Krull UJ. Localized  surface plasmon resonance: nanostructures, bioassays and biosensing–A review.  Anal Chim Acta 2011; 706: 8-24.
 
- Willets KA, Van Duyne RP. Localized  surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 2007; 58:  267-297.
 
- Klimov V. Nanoplasmonics. New York: Jenny Stanford  Publishing; 2014.
 
- Novotny L, Hecht B. Principles of  nanooptics. New York: Cambridge University  Press; 2006.
 
- Malinsky MD, et al. Nanosphere  lithography: effect of substrate on the localized surface Plasmon resonance  spectrum of silver nanoparticles. J Phys Chem 2001; 105(12): 2343-2350.
 
- Yurkin MA, Huntemann M. Rigorous and  fast discrete dipole approximation for particles near a plane interface. J Phys  Chem 2015; 119(52): 29088-29094.
 
- Amendola V, Bakr OM,  Stellacci F. A study of the surface plasmon resonance of silver nanoparticles  by the discrete dipole approximation method: effect of shape, size, structure,  and assembly. Plasmonics 2010; 5: 85-97.
 
- Mishchenko MI, Travis LD, Mackowski  DW. T-matrix computations of light scattering by nonspherical particles: A  review. J Quant Spectrosc Radiat Transfer 1996; 55: 535-575.
 
- Kurushin AA, Plasticov AN. Designing  microwave devices in the environment CST Microwave Studio [In Russian]. Moscow: MPEI Publishing  House, 2010: 47-73.
 
- Borovkov AI, et al. Computer  engineering [In Russian]. Saint-Petersburg: SPbTU Publisher; 2012.
 
- Borovkov AI, et al. Modern engineering  education [In Russian]. Saint-Petersburg: SPbTU Publisher;  2012. 
 
- Horikoshi K, Kato T. Theoretical  study of the interparticle interaction of nanoparticles randomly dispersed on a  substrate. J Appl Phys 2015; 117: 23117.
 
- Inan US, Marshall RA. Numerical  electromagnetics: The FDTD method. Cambridge: Cambridge University Press; 2011: 316-326.
 
- Krietenstein B,  et al. The perfect boundary approximation technique facing the challenge of  high precision field computation. 19th Int Linear Accelerator Conf 1998:  860-862.
 
- Fritzen F, Bohlke T. Influence of  the type of boundary conditions on the numerical properties of unit cell problems.  Tech Mech 2010; 30(4): 354-363.
 
- Diebold S, et al. Modelling of transistor  feeding structures based on electro-magnetic field simulations. 2012 Workshop  on Integrated Nonlinear Microwave and Millimetre-wave Circuits 2012: 1-3.
 
- Sullivan DM. Electromagnetic  simulation using the FDTD method. New    York: Wiley-IEEE Press; 2013.
 
- Thoma P, Weiland T. A subgridding  method in combination with the finite integration technique. 1995 25th European  Microwave Conf 1995; 2: 1-4.
 
- Tian Y, et al. Numerical simulation of  fiber-optic photoacoustic generator using nanocomposite material. J Comput  Acoust 2013; 21(2): 1350002.
 
- Kurushin AA, Plastikov AN. Electrodynamics for  CAD users [In Russian]. Moscow:  “MEI” Publisher; 2011.
 
- Clemens M, Weiland T. Discrete  electromagnetism with the finite integration technique. Progress in Electromagnetics Research  2001; 32: 65-87.
 
- Bankov SE, Kurushin AA.  Electrodynamics and microwave technology for CAD users [In Russian]. Moscow: “IRE AN” Publisher;  2008.
 
- Pozar DM. Microwave engineering. 4th  ed. Hoboken:  John Wiley & Sons; 2012.
 
- Clemens  M, Feigh S, Weiland T. Geometric multigrid algorithms using the conformal  finite integration technique. IEEE Trans Magn 2004; 40(2): 1065-1078.
 
- Bondeson  A, Rylander T, Ingelstron P. Texts in applied mathematics – Computational  electromagnetics. New York:  Springer; 2005p.
 
- Podoltsev AD, Kucherjavaya IN. Multiphysics  simulation of electrical devices [In Russian]. Tehnichna Elektrodinamika  2015; 2: 3-15.
 
- Hameyer K, et al. The classification of coupled  field problems. IEEE Trans Magn 1999; 35(3): 1618-1621.
 
- Bezzubceva  MM, Volkov VS. Analytical review of application software packages for modeling  energy processes in consumer energy systems of the agro-industrial complex [In  Russian]. Mezhdunarodnyy Zhurnal Prikladnykh i Fundamental'nykh Issledovaniy  2015; 6(2): 191-195.
 
- Hoffmann  J, et al. Comparison of electromagnetic field solvers for the 3D analysis of  plasmonic nano antennas. Proc SPIE 2009; 7390: 73900J.
 
- Sarid  D, Challener W. Modern introduction to surface plasmons: theory, mathematica  modeling and applications. New York: Cambridge University Press; 2010.
 
- Wolfe  C. Multiphysics: the future of simulation. ANSYS Advantage 2014; 8(2): 6-10.
 
- Paulsen  M, et al. Simulation methods for multiperiodic and aperiodic nanostructured  dielectric waveguides. Opt Quantum Electron 2017; 49(107): 106-120.
 
- Al-Mufti  WM, Hashim U, Adam T. The state of the arts: simulation of nanostructures using  COMSOL Multiphysics. Adv Mater Res 2013; 832: 206-211.
 
- Zhangyang  X, et al. The effect of geometry parameters on light harvesting performance of  GaN nanostructure arrays–a numerical investigation and simulation. Mater Res  Express 2019; 7(1): 15009.
 
- Seth  M, Ewusi-Annan E, Jensen L. Controlling the non-resonant chemical mechanism of  SERS using а molecular photoswitch. Phys Chem Chem Phys 2009; 11: 7424-7429.
 
- Li  JF, et al. Shelled-isolated nanoparticle-enhanced Raman spectroscopy. Nature  2010; 464: 392-395.
 
- Sidorov  AN, et al. A surface-enhanced Raman spectroscopy study of thin graphene sheets  functionalized with gold and silver nanostructures by seed-mediated growth.  Carbon 2012; 50(2): 699-705.
 
- Herrera  GM, Padilla AC, Hernandez-Rivera SP. Surface enhanced Raman scattering (SERS)  studies of gold and silver nanoparticles prepared by laser ablation. Nanomaterials  2013; 3(1): 158-172.
 
- Mikitchuk  AP, Kozadaev KV. Photostability of fiber-optic photoacoustic transducer based  on silver nanoparticle layer. Semiconductors 2020; 54(14): 1836-1839. DOI: 10.1134/S1063782620140195.
 
- Goncharov  VK, Kozadaev KV, Mikitchuk AP, Puzyrev MV. Synthesis, structural and spectral  properties of surface noble metal nanostructures for fiber-optic photoacoustic  generation. Semiconductors 2019; 53(14): 1950-1953. DOI:  10.1134/S1063782619140070.
 
- Girshova  EI, Mikitchuk AP, Belonovski AV, Morozov KM, Kaliteevski MA. Prospects for  using organic and metal−polymer materials in optoacoustic generators of ultrasound.  Bulletin of the Russian   Academy of Sciences:  Physics 2022; 86(7): 833-836. DOI: 10.3103/S1062873822070140.
 
- Mikitchuk  AP, Kozadaev KV. Photoacoustic generation with surface noble metal nanostructures.  Semiconductors 2018; 52(14): 1839-1842. DOI: 10.1134/S106378261814018X.
 
- Nishijima  Y, Rosa L, Juodkazis S. Surface plasmon resonances in periodic and random  patterns of gold nano-disks for broadband light harvesting. Opt Express 2012;  20(10): 11466-11477.
 
- Pozar  DM. Microwave engineering. John Wiley & Sons; 2012.
 
- Fritzen  F, Bohlke T. Influence of the type of boundary conditions on the numerical  properties of unit cell problems. Tech Mech 2010; 30(4): 354-363.
 
- Girshova  EI, Mikitchuk AP, Belonovski AV, Morozov KM. Hybrid metal polymer as a  potential active medium of an optoacoustic generator. Tech Phys Lett 2022; 48(2):  32-35. DOI: 10.21883/TPL.2022.02.52842.18948.
 
- Kreibig  U, Vollmer M. Optical properties of metal clusters. Springer-Verlag; 1995.
 
- Mikitchuk  AP, Girshova EI, Kugeiko MM. Thermophysical and mechanical properties of active  membranes for photoacoustic generators of forced acoustic oscillations. Tech  Phys Lett 2022; 48(4): 50-53. DOI: 10.21883/TPL.2022.04.53171.19089. 
- Mikitchuk A, Kozadaev К. Comprehensive theoretical  study of optical, thermophysical and acoustic properties of surface  nanostructures with metallic nanoparticles for fiber-optic photoacoustic  ultrasound transducers. Przeglad Elektrotechniczny 2020; 3: 129-137.
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20