(47-4) 03 * << * >> * Russian * English * Content * All Issues

Spin angular momentum and angular harmonics spectrum of two-order polarization vortices at the tight focus
A.A. Kovalev 1,2, V.V. Kotlyar 1,2

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 968 kB

DOI: 10.18287/2412-6179-CO-1282

Pages: 533-540.

Full text of article: Russian language.

Abstract:
We investigate the spin angular momentum (SAM) of two-order cylindrical vector beams at the tight focus. Such beams are a generalization of the conventional cylindrical vector beams since the transverse field components on the Cartesian axes have different polarization orders. Using the Richards-Wolf approximation, we derive an expression for the longitudinal component of the SAM density distribution. We show that if the polarization indices are of different parity then, an optical spin Hall effect arises at the tight focus, meaning that alternating areas with positive and negative SAM are originated although the initial light field is linearly polarized. We study the angular harmonics spectrum of all the components of the focused light field and determine the predominant angular harmonics. Then, neglecting the insignificant harmonics, we define the shape of the longitudinal component of the SAM density distribution and demonstrate the possibility of generating a focal SAM distribution where the areas with positive and negative SAM reside on a circle as alternating pairs or separated into different half-circles.

Keywords:
cylindrical vector beam; two-index cylindrical vector beam; tight focus; Richards-Wolf theory; spin angular momentum; optical spin Hall effect; angular harmonics spectrum.

Citation:
Kovalev AA, Kotlyar VV. Spin angular momentum and angular harmonics spectrum of two-order polarization vortices at the tight focus. Computer Optics 2023; 47(4): 533-540. DOI: 10.18287/2412-6179-CO-1282.

Acknowledgements:
This work was financially supported by the Russian Science Foundation under project No. 22-12-00137.

References:

  1. Friese MEJ, Rubinsztein-Dunlop H, Gold J, Hagberg P, Hanstorp D. Optically driven micromachine elements. Appl Phys Lett 2001; 78: 547-549. DOI: 10.1063/1.1339995.
  2. Shen Y, Weitz DA, Forde NR, Shayegan M. Line optical tweezers as controllable micromachines: techniques and emerging trends. Soft Matter 2022; 18: 5359-5565. DOI: 10.1039/D2SM00259K.
  3. Liu J, Li Z. Controlled mechanical motions of microparticles in optical tweezers. Micromachines 2018; 9: 232. DOI: 10.3390/mi9050232.
  4. Dickey FM. Laser beam shaping: Theory and techniques. 2nd ed. Boca Raton, FL, USA: CRC Press, Taylor & Francis Group; 2014.
  5. Zeitner UD, Aagedal H, Wyrowski F. Comparison of resonator-originated and external beam shaping. Appl Opt 1999; 38: 980-986. DOI: 10.1364/AO.38.000980.
  6. Abramochkin EG, Volostnikov VG. Modern optics of Gaussian beams [In Russian]. Moscow: “Fizmatlit” Publisher; 2010. ISBN: 978-5-9221-1216-1.
  7. Soifer VA, ed. Methods for computer design of diffractive optical elements. New York: John Willey & Sons Inc; 2002. ISBN: 978-0-471-09533-0.
  8. Angelsky OV, Bekshaev AYa, Maksimyak PP, Maksimyak AP, Hanson SG, Zenkova CYu. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams. Opt Express 2012; 20: 3563-3571. DOI: 10.1364/OE.20.003563.
  9. Zhang J, Yu J, Chi N. Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses. Sci Rep 2015; 5: 13649. DOI: 10.1038/srep13649.
  10. Stafeev SS, Nalimov AG, Kovalev AA, Zaitsev VD, Kotlyar VV. Circular polarization near the tight focus of linearly polarized light. Photonics 2022; 9(3): 196.  DOI: 10.3390/photonics9030196.
  11. Kotlyar VV, Stafeev SS, Kovalev AA, Zaitsev VD. Spin Hall effect before and after the focus of a high-order cylindrical vector beam. Appl Sci 2022; 12(23): 12218. DOI: 10.3390/app122312218.
  12. Khonina SN, Ustinov AV, Porfirev AP. Vector Lissajous laser beams. Opt Lett 2020; 45(15): 4112-4115. DOI: 10.1364/OL.398209.
  13. Freund I. Polarization singularity indices in Gaussian laser beams. Opt Commun 2002; 201: 251-270. DOI: 10.1016/S0030-4018(01)01725-4.
  14. Kessler DA, Freund I. Lissajous singularities. Opt Lett 2003; 28: 111-113. DOI: 10.1364/OL.28.000111.
  15. Kotlyar VV, Kovalev AA, Stafeev SS, Nalimov AG, Rasouli S. Tightly focusing vector beams containing V-point polarization singularities. Opt Laser Technol 2022; 145: 107479. DOI: 10.1016/j.optlastec.2021.107479.
  16. Richards B, Wolf E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc R Soc Lond A 1959; 253: 358-379. DOI: 10.1098/rspa.1959.0200.
  17. Kotlyar VV, Kovalev AA, Nalimov AG. Energy density and energy flux in the focus of an optical vortex: reverse flux of light energy. Opt Lett 2018; 43(12): 2921-2924. DOI: 10.1364/OL.43.002921.
  18. Barnett SM, Allen L. Orbital angular momentum and nonparaxial light beams. Opt Commun 1994; 110: 670-678. DOI: 10.1016/0030-4018(94)90269-0.
  19. Dennis MR. Topological singularities in wave fields. PhD thesis. Bristol: University of Bristol; 2001.
  20. Ponce de Leon J. Revisiting the orthogonality of Bessel functions of the first kind on an infinite interval. Eur J Phys 2015; 36: 015016. DOI: 10.1088/0143-0807/36/1/015016.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20