(47-4) 14 * << * >> * Russian * English * Content * All Issues
  
The preliminary study of diabetic retinopathy detection based on intensity parameters with optical coherence tomography angiography
 J. Hou 1, H. Shi 1, W. Gao 2, P. Lin  , B. Li 3, Y. Shi 3, I.A. Matveeva 4, V.P. Zakharov 4, I.A. Bratchenko 4
 1 School of Safety Engineering, Ningbo University of Technology,
 China, Zhejiang, Ningbo, Jiangbei, Fenghua Rd. 201;
    2 School of Computer Science, Ningbo University of Technology,
     China, Zhejiang, Ningbo, Jiangbei, Fenghua Rd. 201;
    3 Department of Ophthalmology, Ningbo First Hospital,
     China, Zhejiang, Ningbo, Haishu, Liuting St. 59;
    4 Department of Laser and Biotechnical Systems, Samara National Research University,
     443086, Russia, Samara, Lukacheva St. 39B
 
 PDF, 1237 kB
  PDF, 1237 kB
DOI: 10.18287/2412-6179-CO-1261
Pages: 620-626.
Full text of article: English language.
 
Abstract:
In  this study, the diagnostic abilities of intensity parameters of optical  coherence tomography angiography (OCTA) images in the early detection of  diabetic retinopathy (DR) were determined. 78 normal healthy eyes, 10 diabetic  eyes with mild non-proliferative diabetic retinopathy (NPDR), and 10 diabetic  eyes with moderate NPDR were employed. Four retinal vascular plexuses were  generated by using OCTA, which included the nerve fiber layer vascular plexus  (NFLVP), superficial vascular plexus (SVP), intermediate capillary plexus (ICP)  and deep capillary plexus (DCP). The parafoveal zone in each OCTA image was  divided into four sectors which were the superior, temporal, inferior, and  nasal sectors. Five intensity parameters including the mean, median, variance,  skewness, and kurtosis of intensities were calculated for each sector. The  factor of aging was evaluated among normal healthy subgroups. The diagnostic  abilities of intensity parameters were evaluated between normal healthy  subjects and diabetic patients with DR. Our results showed that the variance of  intensities in superior sector in ICP achieved the highest AUROC value of 0.95  with the sensitivity of 0.87 and the specificity of 1.000 when comparing the  diabetic patients with the mild NPDR to normal healthy subjects. The mean  intensity in superior sector in ICP achieved the second highest AUROC value of  0.95 with the sensitivity of 0.90 and the specificity of 0.90 when comparing  the diabetic patients with the moderate NPDR to normal healthy subjects. The  proposed approach could offer a simple way to differentiate diabetic patients  with early DR from normal healthy subjects without performing the relatively  complicated image processing techniques.
Keywords:
diabetic retinopathy, optical coherence tomography angiography, intensity, variance.
Citation:
  Hou J, Shi H, Gao W, Lin P, Li B, Shi Y, Matveeva I, Zakharov V, Bratchenko I. The preliminary study of diabetic retinopathy detection based on intensity parameters with optical coherence tomography angiography. Computer Optics 2023; 47 (4): 620-626. DOI: 10.18287/2412-6179-CO-1261.
Acknowledgements:
  This  study was supported by Zhejiang Provincial Natural Science Foundation  (LY20H180009), Qianjiang Talent Plan (QJD1803009), Ningbo Science and Technology  Service Industry Demonstration Project (2020F031), Zhejiang Provincial  Traditional Chinese Medicine Science and Technology Project (2023ZL647), and  Ministry of Science and Higher Education of the Russian Federation as part of  the Program for increasing the competitiveness of Samara University among the  world's leading research and educational centers for 2013–2020.
References:
  - International Diabetes Federation. IDF diabetes  atlas, 10th ed. Brussels, Belgium: 2021. Source:  <https://www.diabetesatlas.org>.
 
- Selph S, Dana T, Bougatsos C, Blazina I, Patel H,  Chou R. Screening for abnormal glucose and Type 2 diabetes mellitus: A  systematic review to update the 2008 U.S. Preventive Services Task Force  recommendation [Internet]. Report No 13-05190-EF-1. Rockville (MD): Agency for  Healthcare Research and Quality (US); 2015. PMID: 25973510.
 
- Cheung  N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet 2010; 376(9735): 124-136.  DOI: 10.1016/S0140-6736(09)62124-3.
 
- Wong  TY, Sabanayagam C. Strategies to tackle the global burden of diabetic  retinopathy: From epidemiology to artificial intelligence. Ophthalmologica  2020; 243(1): 9-20. DOI: 10.1159/000502387. PMID: 31408872.
 
- Lee  VS, Kingsley RM, Lee ET, Lu M, Russell D, Asal NR, Bradford RH Jr, Wilkinson  CP. The diagnosis of diabetic retinopathy. Ophthalmoscopy versus fundus  photography. Ophthalmology 1993; 100(10): 1504-1512. DOI:  10.1016/s0161-6420(93)31449-1. PMID: 8414411.
 
- Enders  C, Baeuerle F, Lang GE, Dreyhaupt J, Lang GK, Loidl M, Werner JU. Comparison  between findings in optical coherence tomography angiography and in fluorescein  angiography in patients with diabetic retinopathy. Ophthalmologica 2020;  243(1): 21-26. DOI: 10.1159/000499114. PMID: 31137028.
 
- de  Barros Garcia JMB, Isaac DLC, Avila M. Diabetic retinopathy and OCT angiography:  clinical findings and future perspectives. Int J Retina Vitreous 2017; 3: 14.  DOI: 10.1186/s40942-017-0062-2. PMID: 28293432. PMCID: PMC5346852.
 
- Corcóstegui  B, Durán S, González-Albarrán MO, et al. Update on diagnosis and treatment of  diabetic retinopathy: A consensus guideline of the working group of ocular  health (Spanish Society of Diabetes and Spanish Vitreous and Retina Society). J  Ophthalmol 2017; 2017: 8234186.
 
- Ishibazawa A,  Nagaoka T, Takahashi A, Omae T, Tani T, Sogawa K, Yokota H, Yoshida A. Optical  coherence tomography angiography in diabetic retinopathy: A prospective pilot  study. Am J Ophthalmol 2015; 160(1): 35-44.e1. DOI: 10.1016/j.ajo.2015.04.021.  PMID: 25896459.
 
- Fukuda Y, Nakao S, Kaizu Y, Arima M, Shimokawa S, Wada  I, Yamaguchi M, Takeda A, Sonoda KH. Morphology  and fluorescein leakage in diabetic retinal microaneurysms: a study using  multiple en face OCT angiography image averaging. Graefes Arch Clin Exp  Ophthalmol 2022; 260(11): 3517-3523. DOI: 10.1007/s00417-022-05713-7. PMID: 35665851.
 
- Thompson IA, Durrani AK,  Patel S. Optical coherence tomography angiography characteristics in diabetic  patients without clinical diabetic retinopathy. Eye (Lond) 2019; 33(4):  648-652. DOI: 10.1038/s41433-018-0286-x. PMID: 30510234. PMCID: PMC6461750.
 
- Gildea  D. The diagnostic value of optical coherence tomography angiography in diabetic  retinopathy: a systematic review. Int Ophthalmol 2019; 39(10): 2413-2433. DOI:  10.1007/s10792-018-1034-8. PMID: 30382465.
 
- Takase  N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y. Enlargement of foveal  avascular zone in diabetic eyes evaluated by en face optical coherence  tomography angiography. Retina 2015; 35(11): 2377-2383. DOI:  10.1097/IAE.0000000000000849. PMID: 26457396.
 
- Al-Sheikh  M, Akil H, Pfau M, Sadda SR. Swept-source OCT angiography imaging of the foveal  avascular zone and macular capillary network density in diabetic retinopathy.  Invest Ophthalmol Vis Sci 2016; 57(8): 3907-3913. DOI: 10.1167/iovs.16-19570.  PMID: 27472076.
 
- Ragkousis  A, Kozobolis V, Kabanarou S, Bontzos G, Mangouritsas G, Heliopoulos I,  Chatziralli I. Vessel density around foveal avascular zone as a potential  imaging biomarker for detecting preclinical diabetic retinopathy: An optical  coherence tomography angiography study. Semin Ophthalmol 2020; 35(5-6):  316-323. DOI: 10.1080/08820538.2020.1845386. PMID: 33258720.
 
- Xie  N, Tan Y, Liu S, Xie Y, Shuai S, Wang W, Huang W. Macular vessel density in  diabetes and diabetic retinopathy with swept-source optical coherence  tomography angiography. Graefes Arch Clin Exp Ophthalmol 2020; 258(12):  2671-2679. DOI: 10.1007/s00417-020-04832-3. PMID: 32661699.
 
- Lavia  C, Couturier A, Erginay A, Dupas B, Tadayoni R, Gaudric A. Reduced vessel  density in the superficial and deep plexuses in diabetic retinopathy is associated  with structural changes in corresponding retinal layers. PLoS One 2019; 14(7):  e0219164. DOI: 10.1371/journal.pone.0219164. PMID: 31318880. PMCID: PMC6638849.
 
- Zahid  S, Dolz-Marco R, Freund KB, Balaratnasingam C, Dansingani K, Gilani F, Mehta N,  Young E, Klifto MR, Chae B, Yannuzzi LA, Young JA. Fractal dimensional analysis  of optical coherence tomography angiography in eyes with diabetic retinopathy.  Invest Ophthalmol Vis Sci 2016; 57(11): 4940-4947. DOI: 10.1167/iovs.16-19656.  PMID: 27654421.
 
- Chen  Q, Ma Q, Wu C, Tan F, Chen F, Wu Q, Zhou R, Zhuang X, Lu F, Qu J, Shen M.  Macular vascular fractal dimension in the deep capillary layer as an early  indicator of microvascular loss for retinopathy in type 2 diabetic patients.  Invest Ophthalmol Vis Sci 2017; 58(9): 3785-3794. DOI: 10.1167/iovs.17-21461.  PMID: 28744552.
 
- Sun  Z, Tang F, Wong R, Lok J, Szeto SKH, Chan JCK, Chan CKM, Tham CC, Ng DS, Cheung  CY. OCT angiography metrics predict progression of diabetic retinopathy and  development of diabetic macular edema: a prospective study. Ophthalmology 2019;  126(12): 1675-1684. DOI: 10.1016/j.ophtha.2019.06.016. Erratum in:  Ophthalmology 2020; 127(12): 1777. PMID: 31358386.
 
- Gao  W, Tátrai E, Ölvedy V, Varga B, Laurik L, Somogyi A, Somfai G, DeBuc D.  Investigation of changes in thickness and reflectivity from layered retinal  structures of healthy and diabetic eyes with optical coherence tomography. J  Biomed Sci Eng 2011; 4: 657-665. DOI: 10.4236/jbise.2011.410082.
 
- Wilkinson  CP, Ferris FL 3rd, Klein RE, et al. Proposed international clinical diabetic  retinopathy and diabetic macular edema disease severity scales. Ophthalmology  2003; 110(9): 1677-1682. DOI:10.1016/S0161-6420(03)00475-5.
 
- Rocholz  R, Teussink MM, Dolz-Marco R, et al. SPECTRALIS optical coherence tomography  angiography (OCTA): principles and clinical applications. Heidelberg, Germany:  Heidelberg Engineering Academy; 2018. Source:  <https://www.heidelbergengineering.com/media/e-learning/Totara/Dateien/pdf-tutorials/210111-001_SPECTRALIS%20OCTA%20-%20Principles%20and%20Clinical%20Applications_EN.pdf>.
 
- Gao  W, DeBuc DC, Zakharov VP, et al. Two-dimensional fractal analysis of retinal  tissue of healthy and diabetic eyes with optical coherence tomography. J Biomed  Photonics Eng 2016; 2: 040302.
 
- Mastropasqua  R, Toto L, Mastropasqua A, Aloia R, De Nicola C, Mattei PA, Di Marzio G, Di  Nicola M, Di Antonio L. Foveal avascular zone area and parafoveal vessel  density measurements in different stages of diabetic retinopathy by optical  coherence tomography angiography. Int J Ophthalmol 2017; 10(10): 1545-1551.  DOI: 10.18240/ijo.2017.10.11. PMID: 29062774. PMCID: PMC5638976.
 
- Hajian-Tilaki  K. Receiver operating characteristic (ROC) curve analysis for medical  diagnostic test evaluation. Caspian J Intern Med 2013; 4(2): 627-635. PMID:  24009950. PMCID: PMC3755824.
 
- Unal  I. Defining an optimal cut-point value in ROC analysis: An alternative  approach. Comput Math Methods Med 2017; 2017: 3762651. DOI:  10.1155/2017/3762651. PMID: 28642804. PMCID: PMC5470053.
 
- Coscas  G, Lupidi M, Coscas F. Heidelberg spectralis optical coherence tomography  angiography: Technical aspects. Dev Ophthalmol 2016; 56: 1-5. DOI:  10.1159/000442768. PMID: 27022921.
 
- Agemy  SA, Scripsema NK, Shah CM, Chui T, Garcia PM, Lee JG, Gentile RC, Hsiao YS,  Zhou Q, Ko T, Rosen RB. Retinal vascular perfusion density mapping using  optical coherence tomography angiography in normals and diabetic retinopathy  patients. Retina 2015; 35(11): 2353-2363. DOI: 10.1097/IAE.0000000000000862.  PMID: 26465617.
 
- Park  JJ, Soetikno BT, Fawzi AA. Characterization of the middle capillary plexus  using optical coherence tomography angiography in healthy and diabetic eyes.  Retina 2016; 36(11): 2039-2050. DOI: 10.1097/IAE.0000000000001077. PMID:  27205895. PMCID: PMC5077697.
 
- Tan  PE, Yu PK, Balaratnasingam C, Cringle SJ, Morgan WH, McAllister IL, Yu DY.  Quantitative confocal imaging of the retinal microvasculature in the human  retina. Invest Ophthalmol Vis Sci 2012; 53(9): 5728-5736. DOI:  10.1167/iovs.12-10017. PMID: 22836777. 
- Provis JM. Development of the primate retinal vasculature. Prog Retin  Eye Res 2001; 20(6): 799-821. DOI: 10.1016/s1350-9462(01)00012-x. PMID:  11587918.
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20