(47-4) 17 * << * >> * Russian * English * Content * All Issues
  
Screen recapture detection based on color-texture analysis of document boundary regions
 I.A. Kunina 1,2, A.V. Sher 2,3, D.P. Nikolaev 1,2
 1 Institute for Information Transmission Problems of RAS (Kharkevich Institute),
 127051, Russia, Moscow, Bolshoy Karetny per. 19, build. 1;
    2 Smart Engines Service LLC, pr. 60-letiya Oktyabrya, 9, Moscow, 117312, Russia;
    3 Moscow Institute of Physics and Technology (State University), 141701, Russia, Dolgoprudny, Institutskiy per. 9
 
 PDF, 1828 kB
  PDF, 1828 kB
DOI: 10.18287/2412-6179-CO-1237
Pages: 650-657.
Full text of article: English language.
 
Abstract:
This paper examines a  presentation attack detection when a document recaptured from a screen is  presented instead of the original document. We propose an algorithm based on  analyzing a moiré pattern within document boundary regions as a distinctive  feature of the recaptured image. It is assumed that the pattern overlapping the  document boundaries is a recapture artifact, not a match between document and  background textures. To detect such a pattern, we propose an algorithm that  employs the result of the fast Hough transform of the document boundary regions  with enhanced pattern contrast. The algorithm performance was measured for the  open dataset DLC-2021, which contains images of mock documents as originals and  their screen recaptures. The precision of the proposed solution was evaluated  as 95.4 %, and the recall as 90.5 %.
Keywords:
document analysis, document liveness detection, screen recapture detection, fast Hough transform.
Citation:
  Kunina IA, Sher AV, Nikolaev DP. Screen recapture detection based on color-texture analysis of document boundary regions. Computer Optics 2023; 47(4): 650-657. DOI: 10.18287/2412-6179-CO-1237.
Acknowledgements:
  This work was partially supported by the Russian Foundation for Basic Research (Project No. 18-29-26035).
References:
  - Kada O, Kurtz C, van  Kieu C, Vincent N. Hologram detection for identity document authentication. In Book: Yacoubi ME, Granger E, Yuen PC, Pal U, Vincent N, eds. Pattern recognition and artificial intelligence. Pt I. Cham: Springer International Publishing; 2022: 346-357.  DOI: 10.1007/978-3-031-09037-0_29.
 
- Chernyshova YS, Aliev  MA, Gushchanskaia ES, Sheshkus AV. Optical font recognition in  smartphone-captured images and its applicability for ID forgery detection.  Proc SPIE 2019; 11041:  110411J. DOI:10.1117/12.2522955.
 
- Polevoy DV,  Sigareva IV, Ershova DM, Arlazarov VV, Nikolaev DP, Ming Z, Luqman MM, Burie  J-C. Document Liveness Challenge Dataset (DLC-2021). J Imaging 2022;  8(7): 181. DOI: 10.3390/jimaging8070181. 
 
- Mahdian  B, Novozamsky A, Saic S. Identification of aliasing-based patterns in  re-captured LCD screens. 2015 IEEE Int Conf on Image  Processing (ICIP) 2015: 616-620. DOI: 10.1109/ICIP.2015.7350872.
 
- Thongkamwitoon  T, Muammar H, Dragotti PL. An image recapture detection algorithm based on  learning dictionaries of edge profiles. IEEE Trans Inf Forensics Secur 2015; 10(5): 953-968. DOI: 10.1109/TIFS.2015.2392566.
 
- Zhu  N, Li Z. Recaptured  image detection through enhanced residual-based  correlation coefficients. In Book: Sun X, Pan Z, Bertino E, eds. ICCCS 2018: Cloud  computing and security. Cham: Springer;  2018: 624-634. DOI: 10.1007/978-3-030-00021-9_55. 
 
- Yang  C, Yang Z, Ke Y, Chen T, Grzegorzek M, See J. Doing more with Moiré pattern  detection in digital photos. IEEE Trans Image Process 2023; 32: 694-708.  DOI: 10.1109/TIP.2022.3232232.
 
- Garcia  DC, de Queiroz RL. Face-spoofing 2D-detection based on Moiré-pattern analysis.  IEEE Trans Inf Forensics Secur 2015; 10(4): 778-786. DOI:  10.1109/TIFS.2015.2411394.
 
- Garcia  DC, de Queiroz RL. Evaluating the effects of image compression in Moiré-pattern-based  face-spoofing detection. 2015 IEEE Int Conf on Image  Processing (ICIP) 2015: 4843-4847. DOI: 10.1109/ICIP.2015.7351727.
 
- Benlamoudi  A, Bekhouche SE, Korichi M, Bensid K, Ouahabi A, Hadid A, Taleb-Ahmed A. Face  presentation attack detection using deep background subtraction. Sensors 2022;  22(10): 3760. DOI: 10.3390/s22103760. 
 
- Yan  J, Chen C. Cross-domain recaptured document detection with texture and  reflectance characteristics.2021 Asia-Pacific Signal and Information  Processing Association Annual Summit  and Conference (APSIPA ASC) 2021: 1708-1715. 
 
- Chen C, Zhao L,  Yan J, Li H. A distortion model-based pre-screening method for document image  tampering localization under recapturing attack. Signal Process 2022; 200: 108666.  DOI: 10.1016/j.sigpro.2022.108666.
 
- Mudgalgundurao  R, Schuch P, Raja K, Ramachandra R, Damer N. Pixel-wise supervision for  presentation attack detection on identity document cards. IET Biometrics 2022; 11(5):  383-395. DOI: 10.1049/bme2.12088.
 
- Abraham E. Moiré  pattern detection using wavelet decomposition and convolutional neural network.  2018 IEEE Symposium Series on Computational Intelligence (SSCI) 2018: 1275-1279.  DOI: 10.1109/SSCI.2018.8628746.
 
- Brady  ML, Yong W. Fast parallel discrete approximation algorithms for the Radon  transform. SPAA '92: Proceedings of the Fourth Annual ACM Symposium on Parallel  Algorithms and Architectures 1992: 91-99. DOI: 10.1145/140901.140911. 
 
- Aliev M, Ershov  EI, Nikolaev DP. On the use of FHT, its modification for practical applications  and the structure of Hough image. Proc SPIE 2019; 11041:  1104119. DOI:  10.1117/12.2522803. 
 
- Hough  PVC. Machine analysis of bubble chamber pictures. Int Conf on  High Energy Accelerators and Instrumentation, CERN 1959: 554-556. 
 
- Finlayson  GD, Schiele B, Crowley  JL. Comprehensive colour image normalization. In Book: Burkhardt H, Neumann B,  eds. Computer Vision - ECCV'98. Berlin, Heidelberg: Springer; 1998. DOI: 10.1007/BFb0055685. 
 
- Smith  AR. Color gamut transform pairs. ACM Siggraph Computer Graphics 1978; 12(3):  12-19. 
- Bezmaternykh PV, Nikolaev DP. A document skew detection  method using fast Hough transform. Proc SPIE 2020; 11433: 114330J. DOI: 10.1117/12.2559069.
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20