(47-5) 07 * << * >> * Russian * English * Content * All Issues

Calculation of the intensity at the sharp focus of a cylindrical vector beam by three methods
A.G. Nalimov 1,2, V.V. Kotlyar 1,2, Yu.V. Khanenko 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,

Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1160 kB

DOI: 10.18287/2412-6179-CO-1346

Pages: 734-741.

Full text of article: Russian language.

Abstract:
We conduct a comparative analysis of diffraction fields upon sharply focusing vortex and non-vortex incident beams, calculated using three non-paraxial methods. The methods employed are a finite difference time domain (FDTD) method, a Rayleigh–Sommerfeld integral, and a Richards–Wolf transformation. The Richards–Wolf transformation is used with two apodization functions of the exit pupil, for a spherical lens and a thin diffractive lens. The numerical simulation shows that the Rayleigh–Sommerfeld integral and the Richards–Wolf transformation can produce almost the same result and save time significantly. Meanwhile, the root-mean-square deviation of the results of both methods from the FDTD method can be as low as 2%. If an ultra-short focal length is used, the Richards–Wolf transformation is found to be more accurate, whereas with increasing distance from the initial plane and outside the focal plane, the Rayleigh-Sommerfeld integral is more accurate.

Keywords:
vector beam, sharp focusing, Rayleigh-Sommerfeld integral, Richards-Wolf transformation.

Citation:
Nalimov AG, Kotlyar VV, Khanenko Y.V. Calculation of the intensity at the sharp focus of a cylindrical vector beam by three methods. Computer Optics 2023; 47(5): 734-741. DOI: 10.18287/2412-6179-CO-1346.

Acknowledgements:
The work was partly funded by the Russian Science Foundation under grant #23-12-00236 (Sections "Numerical simulation", "Discussion") and the RF Ministry of Science and Higher Education within a state contract with the FSRC "Crystallography and Photonics" RAS (Sections "Introduction", "Conclusion").

References:

  1. Goodman JW. Introduction to Fourier optics. 3rd ed. Greenwood Village: Roberts & Company Publishers; 2005. ISBN: 0-9747077-2-4.
  2. Ersoy OK. Diffraction, Fourier optics and imaging. Hoboken, NJ: John Wiley & Sons Inc; 2007. ISBN: 978-0-471-23816-4.
  3. Lee J-Y, Greengard L. The type 3 nonuniform FFT and its applications. J Comput Phys 2005; 206(1): 1-5. DOI: 10.1016/j.jcp.2004.12.004.
  4. Greengard L, Lee JY. Accelerating the nonuniform fast Fourier transform. SIAM Rev 2004; 46: 443-454. DOI: 10.1137/S003614450343200X.
  5. Long J, Cai P, Liu C, Qu W, Yan H. Aperture synthesis based solely on phase images in digital holography. Chin Opt Lett 2021; 19(7): 070501. DOI: 10.1364/COL.19.070501.
  6. Xiao L, Qin Y, Tang X, Wan C, Li G, Zhong L. Beam shaping characteristics of an unstable-waveguide hybrid resonator. Appl Opt 2014; 53(10): 2213-2219. DOI: 10.1364/AO.53.002213.
  7. Wu C, Ko J, Rzasa JR, Paulson DA, Davis CC. Phase and amplitude beam shaping with two deformable mirrors implementing input plane and Fourier plane phase modifications. Appl Opt 2018; 57(9): 2337-2345. DOI: 10.1364/AO.57.002337.
  8. Skidanov RV, Rykov MA, Innacchione GS, Krivoshlykov SG. The modification of laser beam for optimization of optical trap force characteristics. Computer Optics 2012; 36(3): 377-386.
  9. Soifer VA, Kotlyar VV, Doskolovich LL. Diffractive optical elements in nanophotonics devices. Computer Optics 2009; 33(4): 352-368.
  10. Kotlyar VV, Nalimov AG, Stafeev SS, O’Faolain L, Kotlyar MV. Thin metalens with high numerical aperture. Computer Optics 2017; 41(1): 5-12. DOI: 10.18287/2412-6179-2017-41-1-5-12.
  11. Tu X, Wang Y, Guo Z, Chen Z, Huang T, Wu X, Luo W. Underwater acoustic wave detection based on packaged optical microbubble resonator. J Lightw Technol 2022; 40(18): 6272-6279. DOI: 10.1109/JLT.2022.3187960.
  12. Tsuji Y, Koshiba M. Finite element method using port truncation by perfectly matched layer boundary conditions for optical waveguide discontinuity problems. J Lightw Technol 2002; 20(3): 463-468. DOI: 10.1109/50.988995.
  13. Koshiba M. Optical waveguide theory by the finite element method. Tokyo: KTK Scientific; 1992: 43-47.
  14. Bendickson JM, Glytsis EN, Gaylord TK. Scalar integral diffraction methods: unification, accuracy, and comparison with a rigorous boundary element method with application to diffractive cylindrical lenses. J Opt Soc Am A 1998; 15(7): 1822-1837. DOI: 10.1364/JOSAA.15.001822.
  15. Kojima T, Ido J. Boundary-element method analysis of light-beam scattering and the sum and differential signal output by DRAW-type optical disk models. Electron Commun Jpn Pt 2 Electron 1991; 74(5): 11-20. DOI: 10.1002/ecjb.4420740502.
  16. Hirayama K, Glytsis EN, Gaylord TK. Rigorous electromagnetic analysis of diffractive cylindrical lenses. J Opt Soc Am A 1996; 13: 2219-2231. DOI: 10.1364/JOSAA.13.002219.
  17. Yee KS. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 1966; AP-14(3): 302-307. DOI: 10.1109/TAP.1966.1138693.
  18. Taflove A, Hagness SC. Computational electrodynamics: the finite-difference time-domain method. Norwood, MA: Artech House; 2000.
  19. Sommerfeld, A. Lectures on theoretical physics. New York: Academic Press; 1954: 361-373.
  20. Khonina SN, Kharitonov SI. Analogue of Rayleigh-Sommerfeld integral for anisotropic and gyrotropic media. Computer Optics 2012; 36(2): 172-182.
  21. Goodman JW. Introduction to Fourier optics. 2nd ed. McGraw-Hill; 1996.
  22. Matsushima K, Shimobaba T. Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields. Opt Express 2009; 17: 19662-19673. DOI: 10.1364/OE.17.019662.
  23. Kim Y-H, Byun C-W, Oh H, Lee J, Pi J-Y, Kim GH, Lee M-L, Ryu H, Chu H-Y, Hwang C-S. Non-uniform sampling and wide range angular spectrum method. J Opt 2014; 16(2): 125710. DOI: 10.1088/2040-8978/16/12/125710.
  24. Zhang W, Zhang H, Jin G. Band-extended angular spectrum method for accurate diffraction calculation in a wide propagation range. Opt Lett 2020; 45(6): 1543-1546. DOI: 10.1364/OL.385553.
  25. Richards B, Wolf E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc R Soc Lond A 1959; 253: 358-379. DOI: 10.1098/rspa.1959.0200.
  26. Siraji AA, Zhao Y. Design and analysis of thin optical lens composed of low-index subwavelength structures. Appl Opt 2019; 58(17): 4654-4664. DOI: 10.1364/AO.58.004654.
  27. Yin S, Zhou C, Luo X, Du C. Imaging by a sub-wavelength metallic lens with large field of view. Opt Express 2008; 16(4): 2578-2583. DOI: 10.1364/OE.16.002578.
  28. Stafeev SS, Nalimov AG, Kotlyar MV, O’Faolain L. A four-zone reflective azimuthal micropolarizer. Computer Optics 2015; 39(5): 709-715. DOI: 10.18287/0134-2452-2015-39-5-709-715.
  29. Zhang W, Zhang, Sheppard CJR, Jin G. Analysis of numerical diffraction calculation methods: from the perspective of phase space optics and the sampling theorem. J Opt Soc Am A 2020; 37(11): 1748-1766. DOI: 10.1364/JOSAA.401908.
  30. Nalimov AG, Khonina SN. Comparison of simulation methods of X-ray propagation through DOE in paraxial area. Izvestia of Samara Scientific Center of the Russian Academy of Sciences 2010; 12(4): 26-31.
  31. Kovalev AA, Kotlyar VV. Spin Hall effect of double-index cylindrical vector beams in a tight focus. Micromachines 2023; 14(2): 494. DOI: 10.3390/mi14020494.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20