(47-5) 09 * << * >> * Russian * English * Content * All Issues

Method of multilayer object sectioning based on a light scattering model
S.D. Bazhitov 1, A.V. Larichev 2,3, A.V. Razgulin 1, T.E. Romanenko 1

Lomonosov Moscow State University, the Faculty of Computational Mathematics and Cybernetics,
119991, Moscow, Russia, Leninskie Gory 1/52;
Lomonosov Moscow State University, the Faculty of Physics,
119991, Moscow, Russia, Leninskie Gory 1/2;
IPLIT RAS - Branch of the Federal Research Center "Crystallography and Photonics" RAS,
140700, Moscow region, Shatura, Svyatoozerskaya 1

 PDF, 1412 kB

DOI: 10.18287/2412-6179-CO-1266

Pages: 751-760.

Full text of article: Russian language.

Abstract:
We discuss a problem of reconstructing (sectioning) multilayer object images in observed images obtained by focusing the imaging system on each layer and containing spurious blurry images of neighboring layers.  The blurring model used describes a physical process of incoherent light scattering in the Fresnel approximation with a priori unknown parameters of the point spread function. We propose a method of "Boundary separation" of sectioning, which combines the use of a physical blur model with modern methods of blur estimating and edge detection. The results of testing the "Boundary separation" method on the data of physical experiments with different-scale model multilayer objects are analyzed and compared with the existing methods for solving the optical sectioning problem. It is concluded that the method is most effective on multilayer objects with clearly defined boundaries, on which the method has demonstrated almost complete restoration of the desired layers.

Keywords:
sectioning, deconvolution, imaging system, convolution, blur.

Citation:
Bazhitov SD, Larichev AV, Razgulin AV, Romanenko TE. Method of multilayer object sectioning based on a light scattering model. Computer Optics 2023; 47(5): 751-760. DOI: 10.18287/2412-6179-CO-1266.

Acknowledgements:
The research input of Bazhitov S.D., Razgulin A.V. and Romanenko T.E. was supported by the Ministry of Education and Science of the Russian Federation under the program of the Moscow Center for Fundamental and Applied Mathematics (agreement 075-15-2022-284).

References:

  1. Larichev AV, Ivanov PV, Iroshnikov NG, Shmalhauzen VI, Otten LJ. Adaptive system for eye-fundus imaging. Quantum Electronics 2002; 32(10): 902-908. DOI: 10.1070/QE2002v032n10ABEH002314.
  2. Wu Q, Merchant FA, Castleman KR. Microscope image processing. Burlington; MA: Elsevier Academic Press; 2008.
  3. Razgulin AV, Iroshnikov NG, Larichev AV, et al. Fourier domain iterative approach to optical sectioning of 3d translucent objects for ophthalmology purposes. Int Arch Photogramm Remote Sens Spatial Inf Sci 2017; 42(2-W4): 173-177. DOI: 10.5194/isprs-archives-XLII-2-W4-173-2017.
  4. Shantz MJ. A minicomputer-based image analysis system. In Book: Brown PB, ed. Computer technology in neuroscience. New York: Halsted; 1976: 113-130.
  5. Agard DA, Sedat JW. Three-dimensional architecture of a polytene nucleus. Nature 1983; 302(5910): 676-681.
  6. Agard DA, Hiraoka Y, Sedat JW. Three-dimensional microscopy: Image processing for high resolution subcellular imaging. Proc SPIE 1989; 1161: 24-30. DOI: 10.1117/12.962684.
  7. Romanenko TE, Razgulin AV. A three-dimensional deconvolution algorithm using graphic processors. Comput Math Model 2019; 30: 80-90. DOI: 10.1007/s10598-019-09436-z.
  8. Oliveira JP, Figueiredo MAT, Bioucas-Dias JM. Parametric blur estimation for blind restoration of natural images: linear motion and out-of-focus. IEEE Trans Image Process 2014; 23(1): 466-477. DOI: 10.1109/TIP.2013.2286328.
  9. Liang M. Parameter estimation for defocus blurred image based on polar transformation. Rev Téc Ing Univ Zulia 2016; 39(1): 333-338. DOI: 10.21311/001.39.1.37.
  10. Koltsov PP. Image blur estimation. Computer Optics 2011; 35(1): 95-102.
  11. Lin HY, Chou XH. Defocus blur parameters identification by histogram matching. J Opt Soc Am A 2012; 29(8): 1694-1706. DOI: 10.1364/JOSAA.29.001694.
  12. Sizikov VS, Stepanov AV, Mezhenin AV, Burlov DI, Eksemplyarov RA. Determining image-distortion parameters by spectral means when processing pictures of the earth’s surface obtained from satellites and aircraft. J Opt Technol 2018; 85(4): 203-210. DOI: 10.1364/JOT.85.000203.
  13. Sizikov VS, Sergienko AA, Kondulukova DA. Spectral method for stable estimating the distortion parameters in inverse problem of image restoration. Journal of Instrument Engineering 2019; 62(4): 379-386. DOI: 10.17586/0021-3454-2019-62-4-379-386.
  14. Sizikov V, Dovgan A, Lavrov A. Eliminating nonuniform smearing and suppressing the Gibbs effect on reconstructed images. Computers 2020; 9(2): 30. DOI: 10.3390/computers9020030.
  15. Chochia P. Analysis of the image spectrum for distortion diagnostics. J Phys Conf Ser 2019; 1368(3): 032011. DOI: 10.1088/1742-6596/1368/3/032011.
  16. Zhuo S, Sim T. Defocus map estimation from a single image. Pattern Recogn 2011; 44: 1852-1858. DOI: 10.1016/j.patcog.2011.03.009.
  17. Liu YQ, Du X, Shen HL, Chen SJ. Estimating generalized Gaussian blur kernels for out-of-focus image deblurring. IEEE Trans Circuits Syst Video Technol 2021; 31(3): 829-843. DOI: 10.1109/TCSVT.2020.2990623.
  18. Zhou X, Molina R, Ma Y, Wang T, Ni D. Parameter-free Gaussian PSF model for extended depth of field in brightfield microscopy. IEEE Trans Image Process 2020; 29: 3227-3238. DOI: 10.1109/TIP.2019.2957941.
  19. Tang C, Hou C, Song Z. Defocus map estimation from a single image via spectrum contrast. Opt Lett 2013; 38(10): 1706-1708. DOI: 10.1364/OL.38.001706.
  20. Asatryan DG. Image blur estimation using gradient field analysis. Computer Optics 2017; 41(6): 957-962. DOI: 10.18287/2412-6179-2017-41-6-957-962.
  21. Budzinskiy S. Elliptic averaging of optical transfer functions for estimating astigmatism and defocus. Opt Commun 2020; 461: 125213. DOI: 10.1016/j.optcom.2019.125213.
  22. Bazhitov SD. On the restoration of the blur parameter in the problem of optical sectioning [In Russian]. Modern Information Technologies and IT Education 2022; 18(1): 20-27. DOI: 10.25559/SITITO.18.202201.20-27.
  23. Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 1986; PAMI-8(6): 679-698. DOI: 10.1109/TPAMI.1986.4767851.
  24. Ilyasova NYu, Demin NS, Shirokanev AS, Kupriyanov AV, Zamytskiy EA. Method for selection macular edema region using optical coherence tomography data. Computer Optics 2020; 44(2): 250-258. DOI: 10.18287/2412-6179-CO-691.
  25. ShaH wavefront sensors. 2023. Source: <http://www.visionica.biz/shah-eng.htm>.
  26. Fish DA, Brinicombe AM, Pike ER, Walker JG. Blind deconvolution by means of the Richardson-Lucy algorithm. J Opt Soc Am A 1995; 12(1): 58-65. DOI: 10.1364/JOSAA.12.000058.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20