(47-5) 11 * << * >> * Russian * English * Content * All Issues
Acute ischemic stroke lesion segmentation in non-contrast CT images using 3D convolutional neural networks
A.V. Dobshik 1, S.K. Verbitskiy 1, I.A. Pestunov 1,2, K.M. Sherman 3, Yu.N. Sinyavskiy 2, A.A. Tulupov 3, V.B. Berikov 1,4
1 Novosibirsk State University, 630090, Russia, Novosibirsk, Pirogova street 1;
2 Federal Research Center for Information and Computational Technologies,
630090, Russia, Novosibirsk, Academician M.A. Lavrentiev avenue 6;
3 International Tomography Center SB RAS, 630090, Russia, Novosibirsk, Institutskaya str. 3a;
4 Sobolev Institute of Mathematics SB RAS, 630090, Russia, Novosibirsk, Academician Koptyuga avenue 4
PDF, 1132 kB
DOI: 10.18287/2412-6179-CO-1233
Pages: 770-777.
Full text of article: English language.
Abstract:
In this paper, an automatic algorithm aimed at volumetric segmentation of acute ischemic stroke lesion in non-contrast computed tomography brain 3D images is proposed. Our deep-learning approach is based on the popular 3D U-Net convolutional neural network architecture, which was modified by adding the squeeze-and-excitation blocks and residual connections. Robust pre-processing methods were implemented to improve the segmentation accuracy. Moreover, a special patches sampling strategy was used to address the large size of medical images and class imbalance and to stabilize neural network training. All experiments were performed using five-fold cross-validation on the dataset containing non-contrast computed tomography volumetric brain scans of 81 patients diagnosed with acute ischemic stroke. Two radiology experts manually segmented images independently and then verified the labeling results for inconsistencies. The quantitative results of the proposed algorithm and obtained segmentation were measured by the Dice similarity coefficient, sensitivity, specificity and precision metrics. The suggested pipeline provides a Dice improvement of 12.0 %, sensitivity of 10.2 % and precision 10.0 % over the baseline and achieves an average Dice of 62.8 ± 3.3 %, sensitivity of 69.9 ± 3.9 %, specificity of 99.7 ± 0.2 % and precision of 61.9 ± 3.6 %, showing promising segmentation results.
Keywords:
ischemic stroke, brain, non-contrast CT, segmentation, CNN, 3D U-Net.
Citation:
Dobshik AV, Verbitskiy SK, Pestunov IA, Sherman KM, Sinyavskiy YuN, Tulupov AA, Berikov VB. Acute ischemic stroke lesion segmentation in non-contrast CT images using 3D convolutional neural networks. Computer Optics 2023; 47(5): 770-777. DOI: 10.18287/2412-6179-CO-1233.
Acknowledgements:
The work was partly supported by RFBR grant No. 19-29-01175, and by the State Contract of the Sobolev Institute of Mathematics, Project No. FWNF-2022-0015.
References:
- Tsao CW, Ada AW, Almarzooq ZI, et al. Heart disease and stroke statistics – 2022 update: A report from the American Heart Association. Circulation 2022; 145(8): e153-e639. DOI: 10.1161/CIR.0000000000001052.
- Shafaat O, Bernstock JD, Shafaat A, Yedavalli VS, Elsayed G, Gupta S, Sotoudeh E, Sair HI, Yousem DM, Sotoudehg H. Leveraging artificial intelligence in ischemic stroke imaging. J Neuroradiology 2022; 49(4): 343-351. DOI: 10.1016/j.neurad.2021.05.001.
- Fartakov EI, Tarkova AR, Kretov EI, Lomivorotov VV, Zykov IS. Possibilities and prospects of hypothermia in the treatment of ischemic stroke [In Russian]. Patologiya Krovoobrashcheniya i Kardiokhirurgiya 2019; 23(1): S18-S25. DOI: 10.21688/1681-3472-2019-1S-S18-S25.
- Bal S, Bhatia R, Menon BK, Shobha N, Puetz V, Dzialowski I, Modi J, Goyal M, Hill MD, Smith EE, Demchuk AM. Time dependence of reliability of noncontrast computed tomography in comparison to computed tomography angiography source image in acute ischemic stroke. Int J Stroke 2012; 10: 55-60. DOI: 10.1111/j.1747-4949.2012.00859.x.
- Sui B, Gao P. Imaging evaluation of acute ischemic stroke. J Int Med Res 2020; 48(1): 0300060518802530. DOI: 10.1177/0300060518802530.
- Simonsen CZ, Leslie-Mazwi TM, Thomalla G. Which imaging approach should be used for stroke of unknown time of onset? Stroke 2021; 52(1): 373-380. DOI: 10.1161/STROKEAHA.120.032020.
- Jadhav AP, Desai SM, Liebeskind DS, Wechsler LR. Neuroimaging of acute stroke Neurol Clin 2020; 38(1): 185-199. DOI: 10.1016/j.ncl.2019.09.004.
- Potter CA, Vagal AS, Goyal M, Nunez DB, Leslie-Mazwi TM, Lev MH. CT for treatment selection in acute ischemic stroke: A code stroke primer. Radiographics 2019; 39(6): 1717-1738. DOI: 10.1148/rg.2019190142.
- Kamalian S, Lev MH. Stroke imaging. Radiol Clin N Am 2019; 57(4): 717-732. DOI: 10.1016/j.rcl.2019.02.001.
- Goyal M, Ospel JM, Menon B, Almekhlafi M, Jayaraman M, Fiehler J, Psychogios M, Chapot R, van der Lugt A, Liu J, Yang P, Agid R, Hacke W, Walker M, Fischer U, Asdaghi N, McTaggart R, Srivastava P, Nogueira RG, Moret J, Saver JL, Hill MD, Dippel D, Fisher M. Challenging the ischemic core concept in acute ischemic stroke imaging. Stroke 2020; 51(10): 3147-3155. DOI: 10.1161/STROKEAHA.120.030620.
- Mangesius S, Janjic T, Steiger R, Haider L, Rehwald R, Knoflach M, Widmann G, Gizewski E, Grams A. Dual-energy computed tomography in acute ischemic stroke: State-of-the-art. Eur Radiol 2021; 31(6): 4138-4147. DOI: 10.1007/s00330-020-07543-9.
- Song K, Guan M, Li W, Jing Z, Xie X, Shi C, Liang J, Qiao H, Huang L. Acute ischemic stroke patients with diffusion-weighted imaging – Alberta Stroke Program Early Computed Tomography Score ≤ 5 can benefit from endovascular treatment: A single-center experience and literature review. Neuroradiology 2019; 61(4): 451-459. DOI: 10.1007/s00234-019-02177-1.
- Provost C, Soudant M, Legrand L, Hassen WB, Xie Y, Soize S, Bourcier R, Benzakoun J, Edjlali M, Boulouis G, Raoult H, Guillemin F, Naggara O, Bracard S, Oppenheim C. Magnetic resonance imaging or computed tomography before treatment in acute ischemic stroke. Stroke 2019; 50(3): 659-664. DOI: 10.1161/STROKEAHA.118.023882.
- Puig J, Shankar J, Liebeskind D, Terceño M, Nael K, Demchuk AM, Menon B, Dowlatshahi D, Leiva-Salinas C, Wintermark M, Thomalla G, Silva Y, Serena J, Pedraza S, Essig M. From "Time is brain" to "Imaging is brain": A paradigm shift in the management of acute ischemic stroke. J Neuroimaging 2020; 30(5): 562-571. DOI: 10.1111/jon.12693.
- Pulli B, Heit JJ, Wintermark M. Computed tomography-based imaging algorithms for patient selection in acute ischemic stroke. Neuroimag Clin N Am 2021; 31(2): 235-250. DOI: 10.1016/j.nic.2020.12.002.
- National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. New Engl J Med 1995; 333(24): 1581-1587. DOI: 10.1056/NEJM199512143332401.
- Zhang X-H, Liang H-M. Systematic review with network meta-analysis: Diagnostic values of ultrasonography, computed tomography, and magnetic resonance imaging in patients with ischemic stroke. Medicine (Baltimore) 2019; 98(30): e16360. DOI: 10.1097/MD.0000000000016360.
- Brazzelli M, Sandercock PAG, Chappell FM, Celani MG, Righetti E, Arestis N, Wardla JM, Deeks JJ. Magnetic resonance imaging versus computed tomography for detection of acute vascular lesions in patients presenting with stroke symptoms. Cochrane DB Syst Rev 2009; 4: CD007424. DOI: 10.1002/14651858.CD007424.pub2.
- Prokhorikhin A, Baystrukov V, Boykov A, Malaev D, Tarkova A, Shayakhmetova S, Grishkov A, Kazancev A, Shigaev V, Kokh V, Avetisyan M, Umerenkov D, Kretov E. Neural network-based system of acute stroke non-contrast computed tomography diagnostics: A comparative study. Russ Electron J Radiol 2020; 10(3): 36-45. DOI: 10.21569/2222-7415-2020-10-3-36-45.
- Muhd Suberi AA, Zakaria WNW, Tomari R, Nazari A, Hj Mohd MN, Nik Fuad NF. Deep transfer learning application for automated ischemic classification in posterior fossa CT images. Int J Adv Comp Sci Appl 2019; 10: 459-465. DOI: 10.14569/ijacsa.2019.0100859.
- Nishio M, Koyasu S, Noguchi S, Kiguchi T, Nakatsu K, Akasaka T, Yamada H, Itoh K. Automatic detection of acute ischemic stroke using non-contrast computed tomography and two-stage deep learning model. Comput Meth Prog Bio 2020; 196: 105711. DOI: 10.1016/j.cmpb.2020.105711.
- Lisowska A, O’Neil A, Dilys V, Daykin M, Beveridge E, Muir K, McLaughlin S, Poole I. Context-aware convolutional neural networks for stroke sign detection in non-contrast CT scans. Comm Com Inf Sc 2017; 723: 494-505. DOI: 10.1007/978-3-319-60964-5_43.
- Kuang H, Najm M, Chakraborty D, Maraj N, Sohn SI, Goyal M, Hill MD, Demchuk AM, Menon BK, Qiu W. Automated ASPECTS on noncontrast CT scans in patients with acute ischemic stroke using machine learning. Am J Neuroradiol 2019; 40(1): 33-38. DOI: 10.3174/ajnr.A5889.
- Rebouças Filho PP, Sarmento RM, Holanda GB, de Alencar Lima D. New approach to detect and classify stroke in skull CT images via analysis of brain tissue densities. Comput Meth Prog Bio 2017; 148: 27-43. DOI: 10.1016/j.cmpb.2017.06.011.
- Peixoto SA, Rebouças Filho PP. Neurologist-level classification of stroke using a Structural Co-Occurrence Matrix based on the frequency domain. Comput Electr Eng 2018; 71: 398-407. DOI: 10.1016/j.compeleceng.2018.07.051.
- Kuang H, Qiu W, Najm M, Dowlatshahi D, Mikulik R, Poppe AY, Puig J, Castellanos M, Sohn SI, Ahn SH, Calleja A, Jin A, Asil T, Asdaghi N, Field TS, Coutts S, Hill MD, Demchuk AM, Goyal M, Menon BK, INTERRSeCT Collaborators. Validation of an automated ASPECTS method on non-contrast computed tomography scans of acute ischemic stroke patients. Int J Stroke 2020; 15(5): 528-534. DOI: 10.1177/1747493019895702.
- Sirsat MS, Fermé E, Câmara J. Machine learning for brain stroke: A review. J Stroke Cerebrovasc 2020; 29(10): 105162. DOI: 10.1016/j.jstrokecerebrovasdis.2020.105162.
- Inamdar MA, Raghavendra U, Gudigar A, Chakole Y, Hegde A, Menon GR, Barua P, Palmer EE, Cheong KH, Chan WY, Ciaccio EJ, Acharya UR. A review on computer aided diagnosis of acute brain stroke. Sensors 2021; 21(24): 8507. DOI: 10.3390/s21248507.
- Murray NM, Unberath M, Hager GD, Hui FK. Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: A systematic review. J Neurointerv Surg 2020; 12(2): 156-164. DOI: 10.1136/neurintsurg-2019-015135.
- Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH. Brain tumor segmentation and radiomics survival prediction: Contribution to the brats 2017 challenge. In Book: Crimi A, Bakas S, Kuijf H, Menze B, Reyes M, eds. Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Cham: Springer International Publishing AG; 2018: 287-297. DOI: 10.1007/978-3-319-75238-9_25.
- Kamnitsas K, Chen L, Ledig C, Rueckert D, Glocker B. Multi-scale 3D convolutional neural networks for lesion segmentation in brain MRI. Proc MICCAI Brain Lesion Workshop 2015; 13: 46.
- Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In Book: Navab N, Hornegger J, Wells WM, Frangi AF, eds. Medical image computing and computer-assisted intervention – MICCAI 2015. Cham, Switzerland: Springer International Publishing; 2015: 234-241. DOI: 10.1007/978-3-319-24574-4_28.
- Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH. nnUNet: A self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 2021; 18(2): 203-211. DOI: 10.1038/s41592-020-01008-z.
- Woo I, Lee A, Jung SC, Lee H, Kim N, Cho SJ, Kim D, Lee J, Sunwoo L, Kang DW. Fully automatic segmentation of acute ischemic lesions on diffusion-weighted imaging using convolutional neural networks: Comparison with conventional algorithms. Korean J Radiol 2019; 20(8): 1275-1284. DOI: 10.3348/kjr.2018.0615.
- Clèrigues A, Valverde S, Bernal J, Freixenet J, Oliver A, Lladó X. Acute ischemic stroke lesion core segmentation in CT perfusion images using fully convolutional neural networks. Comput Biol Med 2019; 115: 103487. DOI: 10.1016/j.compbiomed.2019.103487.
- Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. In Book: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W, eds. Medical image computing and computer-assisted intervention – MICCAI 2016. Pt II. Cham: Springer International Publishing AG; 2016: 424-432. DOI: 10.1007/978-3-319-46723-8_49.
- Milletari F, Navab N, Ahmadi SA. V-net: Fully convolutional neural networks for volumetric medical image segmentation. 2016 Fourth Int Conf 3D Vision 2016; 565-571 DOI: 10.1109/3DV.2016.79.
- Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 2017; 36: 61-78. DOI: 10.1016/j.media.2016.10.004.
- Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH. No new-net. In Book: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T, eds. Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Pt II. Cham: Springer Nature Switzerland AG; 2019: 234-244. DOI: 10.1007/978-3-030-11726-9_21.
- Tuladhar A, Schimert S, Rajashekar D, Kniep HC, Fiehler J, Forkert ND. Automatic segmentation of stroke lesions in non-contrast computed tomography datasets with convolutional neural networks. IEEE Access 2020; 8: 94871-94879. DOI: 10.1109/ACCESS.2020.2995632.
- Li Y., Fan Y. DeepSEED: 3D Squeeze-and-Excitation encoder-decoder convolutional neural networks for pulmonary nodule detection. Proc IEEE Int Symp Biomed Imaging 2020: 1866-1869. DOI: 10.1109/ISBI45749.2020.9098317.
- Abramova V, Clèrigues A, Quiles A, Figueredo DG, Silva Y, Pedraza S, Oliver A, Lladó X. Hemorrhagic stroke lesion segmentation using a 3D U-Net with squeeze-and-excitation blocks. Comput Med Imag Grap 2021; 90: 101908. DOI: 10.1016/j.compmedimag.2021.101908.
- Roy AG, Navab N, Wachinger C. Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In Book: Frangi AF, Schnabel JA, Davatzikos C, Alberola-López C, Fichtinger G, eds. Medical image computing and computer assisted intervention – MICCAI 2018. Pt I. Cham: Springer Nature Switzerland AG; 2018: 421-429. DOI: 10.1007/978-3-030-00928-1_48.
- Hatamizadeh A, Tang Y, Nath V, Yang D, Myronenko A, Landman B, Roth RH, Xu D. UNETR: Transformers for 3d medical image segmentation. IEEE Wint Conf Appl 2022; 1748-1758. DOI: 10.1109/WACV51458.2022.00181.
- Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy FM, Sonka M, Buatti J, Aylward SR, Miller JV, Pieper S, Kikinis R. 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 2012; 30(9): 1323-1341. DOI: 10.1016/j.mri.2012.05.001.
- Lev MH, Gonzalez RG. CT angiography and CT perfusion imaging. In Book: Toga AW, Mazziotta JC, eds. Brain mapping: The methods. 2nd ed. Amsterdam: Academic Press; 2002: 427-484. DOI: 10.1016/B978-012693019-1/50019-8.
- Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Int Conf Mach Learn 2015; 37: 448-456.
- He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proc CVPR IEEE 2016: 770-778. DOI: 10.1109/CVPR.2016.90.
- Sudre CH, Li W, Vercauteren T, Ourselin S, Jorge Cardoso M. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In Book: Cardoso MJ, Arbel T, Carneiro G, Syeda-Mahmood T, Tavares JMRS, Moradi M, Bradley A, Greenspan H, Papa JP, Madabhushi A, Nascimento JC, Cardoso JS, Belagiannis V, Lu Z, eds. Deep learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer International Publishing AG; 2017: 240-248. DOI: 10.1007/978-3-319-67558-9_28.
- Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv Preprint. 2017. Source: <https://arxiv.org/abs/1412.6980>. DOI: 10.48550/arXiv.1412.6980.
- Pérez-García F, Sparks R, Ourselin S. TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Comput Meth Prog Bio 2021; 208: 106236. DOI: 10.1016/j.cmpb.2021.106236.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20